
Logic Programming

Frank Pfenning
Carnegie Mellon University

Draft of January 2, 2007

Notes for a course given at Carnegie Mellon University, Fall 2006. Mate-
rials available at http://www.cs.cmu.edu/~fp/courses/lp. Please send
comments to fp@cs.cmu.edu.

Copyright c© Frank Pfenning 2006–2007

LECTURE NOTES JANUARY 2, 2007

15-819K: Logic Programming

Lecture 1

Logic Programming

Frank Pfenning

August 29, 2006

In this first lecture we give a brief introduction to logic programming. We
also discuss administrative details of the course, although these are not
included here, but can be found on the course web page.1

1.1 Computation vs. Deduction

Logic programming is a particular way to approach programming. Other
paradigms we might compare it to are imperative programming or func-
tional programming. The divisions are not always clear-cut—a functional
language may have imperative aspects, for example—but the mindset of
various paradigms is quite different and determines how we design and
reason about programs.

To understand logic programming, we first examine the difference be-
tween computation and deduction. To compute we start from a given ex-
pression and, according to a fixed set of rules (the program) generatee a
result. For example, 15 + 26 → (1 + 2 + 1)1 → (3 + 1)1 → 41. To deduce
we start from a conjecture and, according to a fixed set of rules (the axioms
and inference rules), try to construct a proof of the conjecture. So computa-
tion is mechanical and requires no ingenuity, while deduction is a creative
process. For example, an + bn 6= cn for n > 2, . . . 357 years of hard work . . .,
QED.

Philosophers, mathematicians, and computer scientists have tried to
unify the two, or at least to understand the relationship between them for
centuries. For example, George Boole2 succeeded in reducing a certain class

1http://www.cs.cmu.edu/~fp/courses/lp/
21815–1864

LECTURE NOTES AUGUST 29, 2006

L1.2 Logic Programming

of logical reasoning to computation in so-called Boolean algebras. Since the
fundamental undecidability results of the 20th centuries we know that not
everything we can reason about is in fact mechanically computable, even if
we follow a well-defined set of formal rules.

In this course we are interested in a connection of a different kind. A
first observation is that computation can be seen as a limited form of de-
duction because it establishes theorems. For example, 15 + 26 = 41 is both
the result of a computation, and a theorem of arithmetic. Conversely, de-
duction can be considered a form of computation if we fix a strategy for
proof search, removing the guesswork (and the possibility of employing
ingenuity) from the deductive process.

This latter idea is the foundation of logic programming. Logic program
computation proceeds by proof search according to a fixed strategy. By
knowing what this strategy is, we can implement particular algorithms in
logic, and execute the algorithms by proof search.

1.2 Judgments and Proofs

Since logic programming computation is proof search, to study logic pro-
gramming means to study proofs. We adopt here the approach by Martin-
Löf [3]. Although he studied logic as a basis for functional programming
rather than logic programming, his ideas are more fundamental and there-
fore equally applicable in both paradigms.

The most basic notion is that of a judgment, which is an object of knowl-
edge. We know a judgment because we have evidence for it. The kind of
evidence we are most interested in is a proof, which we display as a deduc-
tion using inference rules in the form

J1 . . . Jn

J
R

where R is the name of the rule (often omitted), J is the judgment estab-
lished by the inference (the conclusion), and J1, . . . , Jn are the premisses of
the rule. We can read it as

If J1 and · · · and Jn then we can conclude J by virtue of rule R.

By far the most common judgment is the truth of a proposition A, which
we write as A true . Because we will be occupied almost exclusively with
the thruth of propositions for quite some time in this course we generally
omit the trailing “true”. Other examples of judgments on propositions are

LECTURE NOTES AUGUST 29, 2006

Logic Programming L1.3

A false (A is false), A true at t (A is true at time t, the subject of temporal
logic), or K knows A (K knows that A is true, the subject of epistemic logic).

To give some simple examples we need a language to express propo-
sitions. We start with terms t that have the form f(t1, . . . , tn) where f is a
function symbol of arity n and t1, . . . , tn are the arguments. Terms can have
variables in them, which we generally denote by upper-case letters. Atomic
propositions P have the form p(t1, . . . , tn) where p is a predicate symbol of ar-
ity n and t1, . . . , tn are its arguments. Later we will introduce more general
forms of propositions, built up by logical connectives and quantifiers from
atomic propositions.

In our first set of examples we represent natural numbers 0, 1, 2, . . . as
terms of the form z, s(z), s(s(z)), . . ., using two function symbols (z of arity
0 and s of arity 1).3 The first predicate we consider is even of arity 1. Its
meaning is defined by two inference rules:

even(z)
evz

even(N)

even(s(s(N)))
evs

The first rule, evz, expresses that 0 is even. It has no premiss and therefore is
like an axiom. The second rule, evs, expresses that if N is even, then s(s(N))
is also even. Here, N is a schematic variable of the inference rule: every
instance of the rule where N is replaced by a concrete term represents a
valid inference. We have no more rules, so we think of these two as defining
the predicate even completely.

The following is a trivial example of a deduction, showing that 4 is even:

even(z)
evz

even(s(s(z)))
evs

even(s(s(s(s(z)))))
evs

Here, we used the rule evs twice: once with N = z and once with N =
s(s(z)).

1.3 Proof Search

To make the transition from inference rules to logic programming we need
to impose a particular strategy. Two fundamental ideas suggest them-
selves: we could either search backward from the conjecture, growing a

3This is not how numbers are represented in practical logic programming languages
such as Prolog, but it is a convenient source of examples.

LECTURE NOTES AUGUST 29, 2006

L1.4 Logic Programming

(potential) proof tree upwards, or we could work forwards from the ax-
ioms applying rules until we arrive at the conjecture. We call the first one
goal-directed and the second one forward-reasoning. In the logic program-
ming literature we find the terminology top-down for goal-directed, and
bottom-up for forward-reasoning, but this goes counter to the direction in
which the proof tree is constructed. Logic programming was conceived
with goal-directed search, and this is still the dominant direction since it
underlies Prolog, the most popular logic programming language. Later in
the class, we will also have an opportunity to consider forward reasoning.

In the first approximation, the goal-directed strategy we apply is very
simple: given a conjecture (called the goal) we determine which inference
rules might have been applied to arrive at this conclusion. We select one of
them and then recursively apply our strategy to all the premisses as sub-
goals. If there are no premisses we have completed the proof of the goal.
We will consider many refinements and more precise descriptions of search
in this course.

For example, consider the conjecture even(s(s(z))). We now execute the
logic program consisting of the two rules evz and evs to either prove or
refute this goal. We notice that the only rule with a matching conclusion is
evs. Our partial proof now looks like

...
even(z)

even(s(s(z)))
evs

with even(z) as the only subgoal.
Considering the subgoal even(z) we see that this time only the rule evz

could have this conclusion. Moreover, this rule has no premisses so the
computation terminates successfully, having found the proof

even(z)
evz

even(s(s(z)))
evs.

Actually, most logic programming languages will not show the proof in
this situation, but only answer yes if a proof has been found, which means
the conjecture was true.

Now consider the goal even(s(s(s(z)))). Clearly, since 3 is not even, the
computation must fail to produce a proof. Following our strategy, we first

LECTURE NOTES AUGUST 29, 2006

Logic Programming L1.5

reduce this goal using the evs rule to the subgoal even(s(z)), with the incom-
plete proof

...
even(s(z))

even(s(s(s(z))))
evs.

At this point we note that there is no rule whose conclusion matches the
goal even(s(z)). We say proof search fails, which will be reported back as
the result of the computation, usually by printing no.

Since we think of the two rules as the complete definition of even we
conclude that even(s(z)) is false. This example illustrates negation as failure,
which is a common technique in logic programming. Notice, however, that
there is an asymmetry: in the case where the conjecture was true, search
constructed an explicit proof which provides evidence for its truth. In the
case where the conjecture was false, no evidence for its falsehood is imme-
diately available. This means that negation does not have first-class status
in logic programming.

1.4 Answer Substitutions

In the first example the response to a goal is either yes, in which case a
proof has been found, or no, if all attempts at finding a proof fail finitely. It
is also possible that proof search does not terminate. But how can we write
logic programs to compute values?

As an example we consider programs to compute sums and differences
of natural numbers in the representation from the previous section. We
start by specifying the underlying relation and then illustrate how it can be
used for computation. The relation in this case is plus(m,n, p) which should
hold if m + n = p. We use the recurrence

(m + 1) + n = (m + n) + 1
0 + n = n

as our guide because it counts down the first argument to 0. We obtain

plus(M,N,P)

plus(s(M), N, s(P))
ps

plus(z,N,N)
pz.

Now consider a goal of the form plus(s(z), s(z), R) where R is an un-
known. This represents the question if there exists an R such that the rela-
tion plus(s(z), s(z), R) holds. Search not only constructs a proof, but also a
term t for R such that plus(s(z), s(z), t) is true.

LECTURE NOTES AUGUST 29, 2006

L1.6 Logic Programming

For the original goal, plus(s(z), s(z), R), only the rule ps could apply be-
cause of a mismatch between z and s(z) in the first argument to plus in the
conclusion. We also see that the R must have the form s(P) for some P ,
although we do not know yet what P should be.

...
plus(z, s(z), P)

plus(s(z), s(z), R)
ps with R = s(P)

For the subgoal only the pz rule applies and we see that P must equal s(z).

plus(z, s(z), P)
pz with P = s(z)

plus(s(z), s(z), R)
ps with R = s(P)

If we carry out the substitutions we obtain the complete proof

plus(z, s(z), s(z))
pz

plus(s(z), s(z), s(s(z)))
ps

which is explicit evidence that 1 + 1 = 2. Instead of the full proof, imple-
mentations of logic programming languages mostly just print the substitu-
tion for the unknowns in the original goal, in this case R = s(s(z)).

Some terminology of logic programming: the original goal is called the
query, its unknowns are logic variables, and the result of the computation is
an answer substitution for the logic variables, suppressing the proof.

1.5 Backtracking

Sometimes during proof search the goal matches the conclusion of more
than one rule. This is called a choice point. When we reach a choice point we
pick the first among the rules that match, in the order they were presented.
If that attempt at a proof fails, we try the second one that matches, and so
on. This process is called backtracking.

As an example, consider the query plus(M, s(z), s(s(z))), intended to
compute an m such that m + 1 = 2, that is, m = 2 − 1. This demon-
strates that we can use the same logic program (here: the definition of the
plus predicate) in different ways (before: addition, now: subtraction).

LECTURE NOTES AUGUST 29, 2006

Logic Programming L1.7

The conclusion of the rule pz, plus(z,N,N), does not match because the
second and third argument of the query are different. However, the rule ps

applies and we obtain

...
plus(M1, s(z), s(z))

plus(M, s(z), s(s(z)))
ps with M = s(M1)

At this point both rules, ps and pz, match. Because the rule ps is listed first,
leading to

...
plus(M2, s(z), z)

plus(M1, s(z), s(z))
ps with M1 = s(M2)

plus(M, s(z), s(s(z)))
ps with M = s(M1)

At this point no rule applies at all and this attempt fails. So we return to
our earlier choice point and try the second alternative, pz.

plus(M1, s(z), s(z))
pz with M1 = z

plus(M, s(z), s(s(z)))
ps with M = s(M1)

At this point the proof is complete, with the answer substitution M = s(z).
Note that with even a tiny bit of foresight we could have avoided the

failed attempt by picking the rule pz first. But even this small amount of in-
genuity cannot be permitted: in order to have a satisfactory programming
language we must follow every step prescribed by the search strategy.

1.6 Subgoal Order

Another kind of choice arises when an inference rule has multiple premises,
namely the order in which we try to find a proof for them. Of course, log-
ically the order should not be relevant, but operationally the behavior of a
program can be quite different.

As an example, we define of times(m,n, p) which should hold if m×n =
p. We implement the recurrence

0× n = 0
(m + 1)× n = (m× n) + n

LECTURE NOTES AUGUST 29, 2006

L1.8 Logic Programming

in the form of the following two inference rules.

times(z, N, z)
tz

times(M,N,P) plus(P,N,Q)

times(s(M),N,Q)
ts

As an example we compute 1× 2 = Q. The first step is determined.

...
times(z, s(s(z)), P)

...
plus(P, s(s(z)), Q)

times(s(z), s(s(z)), Q)
ts

Now if we solve the left subgoal first, there is only one applicable rule
which forces P = z

times(z, s(s(z)), P)
ts (P = z)

...
plus(P, s(s(z)), Q)

times(s(z), s(s(z)), Q)
ts

Now since P = z, there is only one rule that applies to the second subgoal
and we obtain correctly

times(z, s(s(z)), P)
ts (P = z)

plus(P, s(s(z)), Q)
pz (Q = s(s(z)))

times(s(z), s(s(z)), Q)
ts.

On the other hand, if we solve the right subgoal plus(P, s(s(z)), Q) first
we have no information on P and Q, so both rules for plus apply. Since ps

is given first, the strategy discussed in the previous section means that we
try it first, which leads to

...
times(z, s(s(z)), P)

...
plus(P1, s(s(z)), Q1)

plus(P, s(s(z)), Q)
ps (P = s(P1), Q = s(Q1)

times(s(z), s(s(z)), Q)
ts.

Again, rules ps and ts are both applicable, with ps listed further, so we

LECTURE NOTES AUGUST 29, 2006

Logic Programming L1.9

continue:

...
times(z, s(s(z)), P)

...
plus(P2, s(s(z)), Q2)

plus(P1, s(s(z)), Q1)
ps (P1 = s(P2), Q1 = s(Q2))

plus(P, s(s(z)), Q)
ps (P = s(P1), Q = s(Q1))

times(s(z), s(s(z)), Q)
ts

It is easy to see that this will go on indefinitely, and computation will not
terminate.

This examples illustrate that the order in which subgoals are solved can
have a strong impact on the computation. Here, proof search either com-
pletes in two steps or does not terminate. This is a consequence of fixing
an operational reading for the rules. The standard solution is to attack the
subgoals in left-to-right order. We observe here a common phenomenon
of logic programming: two definitions, entirely equivalent from the logical
point of view, can be very different operationally. Actually, this is also true
for functional programming: two implementations of the same function
can have very different complexity. This debunks the myth of “declarative
programming”—the idea that we only need to specify the problem rather
than design and implement an algorithm for its solution. However, we can
assert that both specification and implementation can be expressed in the
language of logic. As we will see later when we come to logical frame-
works, we can integrate even correctness proofs into the same formalism!

1.7 Prolog Notation

By far the most widely used logic programming language is Prolog, which
actually is a family of closely related languages. There are several good
textbooks, language manuals, and language implementations, both free
and commercial. A good resource is the FAQ4 of the Prolog newsgroup5

For this course we use GNU Prolog6 although the programs should run in
just about any Prolog since we avoid the more advanced features.

The two-dimensional presentation of inference rules does not lend itself

4http://www.cs.kuleuven.ac.be/~remko/prolog/faq/files/faq.html
5news://comp.lang.prolog/
6http://gnu-prolog.inria.fr/

LECTURE NOTES AUGUST 29, 2006

L1.10 Logic Programming

to a textual format. The Prolog notation for a rule

J1 . . . Jn

J
R

is
J ← J1, . . . , Jn.

where the name of the rule is omitted and the left-pointing arrow is ren-
dered as ‘:-’ in a plain text file. We read this as

J if J1 and · · · and Jn.

Prolog terminology for an inference rule is a clause, where J is the head of
the clause and J1, . . . , Jn is the body. Therefore, instead of saying that we
“search for an inference rule whose conclusion matches the conjecture”, we say
that we “search for a clause whose head matches the goal”.

As an example, we show the earlier programs in Prolog notation.

even(z).

even(s(s(N))) :- even(N).

plus(s(M), N, s(P)) :- plus(M, N, P).

plus(z, N, N).

times(z, N, z).

times(s(M), N, Q) :-

times(M, N, P),

plus(P, N, Q).

Clauses are tried in the order they are presented in the program. Subgoals
are solved in the order they are presented in the body of a clause.

1.8 Unification

One important operation during search is to determine if the conjecture
matches the conclusion of an inference rule (or, in logic programming ter-
minology, if the goal unifies with the head of a clause). This operation is
a bit subtle, because the the rule may contain schematic variables, and the
the goal may also contain variables.

As a simple example (which we glossed over before), consider the goal
plus(s(z), s(z), R) and the clause plus(s(M),N, s(P)) ← plus(M,N,P). We

LECTURE NOTES AUGUST 29, 2006

Logic Programming L1.11

need to find some way to instantiate M , N , and P in the clause head and R

in the goal such that plus(s(z), s(z), R) = plus(s(M),N, s(P)).

Without formally describing an algorithm yet, the intuitive idea is to
match up corresponding subterms. If one of them is a variable, we set it
to the other term. Here we set M = z, N = s(z), and R = s(P). P is
arbitrary and remains a variable. Applying these equations to the body of
the clause we obtain plus(z, s(z), P) which will be the subgoal with another
logic variable, P .

In order to use the other clause for plus to solve this goal we have to
solve plus(z, s(z), P) = plus(z,N,N) which sets N = s(z) and P = s(z).

This process is called unification, and the equations for the variables we
generate represent the unifier. There are some subtle issues in unification.
One is that the variables in the clause (which really are schematic variables
in an inference rule) should be renamed to become fresh variables each time
a clause is used so that the different instances of a rule are not confused
with each other. Another issue is exemplified by the equation N = s(s(N))
which does not have a solution: the right-hand side will have have two
more successors than the left-hand side so the two terms can never be
equal. Unfortunately, Prolog does not properly account for this and treats
such equations incorrectly by building a circular term (which is definitely
not a part of the underlying logical foundation). This could come up if we
pose the query plus(z, N, s(N)): “Is there an n such that 0 + n = n + 1.”

We discuss the reasons for Prolog’s behavior later in this course (which
is related to efficiency), although we do not subscribe to it because it sub-
verts the logical meaning of programs.

1.9 Beyond Prolog

Since logic programming rests on an operational interpretation of logic, we
must study various logics as well as properties of proof search in these
logics in order to understand logic programming. We will therefore spend
a fair amount of time in this course isolating logical principles. Only in this
way can we push the paradigm to its limits without departing too far from
what makes it beautiful: its elegant logical foundation.

Roughly, we repeat the following steps multiple times in the course,
culminating in an incredibly rich language that can express backtracking
search, concurrency, saturation, and even correctness proofs for many pro-
grams in a harmonious whole.

1. Design a logic in a foundationally and philosophically sound manner.

LECTURE NOTES AUGUST 29, 2006

L1.12 Logic Programming

2. Isolate a fragment of the logic based on proof search criteria.

3. Give an informal description of its operational behavior.

4. Explore programming techniques and idioms.

5. Formalize the operational semantics.

6. Implement a high-level interpreter.

7. Study properties of the language as a whole.

8. Develop techniques for reasoning about individual programs.

9. Identify limitations and consider how they might be addressed, either
by logical or operational means.

10. Go to step 1.

Some of the logics we will definitely consider are intuitionistic logic,
modal logic, higher-order logic, and linear logic, and possibly also tempo-
ral and epistemic logics. Ironically, even though logic programming de-
rives from logic, the language we have considered so far (which is the basis
of Prolog) does not require any logical connectives at all, just the mecha-
nisms of judgments and inference rules.

1.10 Historical Notes

Logic programming and the Prolog language are credited to Alain Colmer-
auer and Robert Kowalski in the early 1970s. Colmerauer had been work-
ing on a specialized theorem prover for natural language processing, which
eventually evolved to a general purpose language called Prolog (for Pro-
grammation en Logique) that embodies the operational reading of clauses
formulated by Kowalski. Interesting accounts of the birth of logic pro-
gramming can be found in papers by the Colmerauer and Roussel [1] and
Kowalski [2].

We like Sterling and Shapiro’s The Art of Prolog [4] as a good introduc-
tory textbook for those who already know how to program and we recom-
mends O’Keefe’s The Craft of Prolog as a second book for those aspiring to
become real Prolog hackers. Both of these are somewhat dated and do not
cover many modern developments, which are the focus of this course. We
therefore do not use them as textbooks here.

LECTURE NOTES AUGUST 29, 2006

Logic Programming L1.13

1.11 Exercises

Exercise 1.1 A different recurrence for addition is

(m + 1) + n = m + (n + 1)
0 + n = n

Write logic programs for addition on numbers in unary notation based on this
recurrence. What kind of query do we need to pose to compute differences correctly?

Exercise 1.2 Determine if the times predicate can be used to calculate exact divi-
sion, that is, given m and n find q such that m = n× q and fail if no such q exists.
If not, give counterexamples for different ways that times could be invoked and
write another program divexact to perform exact divison. Also write a program to
calculate both quotient and remainder of two numbers.

Exercise 1.3 We saw that the plus predicate can be used to compute sums and dif-
ferences. Find other creative uses for this predicate without writing any additional
code.

Exercise 1.4 Devise a representation of natural numbers in binary form as terms.
Write logic programs to add and multiply binary numbers, and to translate be-
tween unary and binary numbers. Can you write a single relation that can be
executed to translate in both directions?

1.12 References

[1] Alain Colmerauer and Philippe Roussel. The birth of Prolog. In Confer-
ence on the History of Programming Languages (HOPL-II), Preprints, pages
37–52, Cambridge, Massachusetts, April 1993.

[2] Robert A. Kowalski. The early years of logic programming. Communi-
cations of the ACM, 31(1):38–43, 1988.

[3] Per Martin-Löf. On the meanings of the logical constants and the justi-
fications of the logical laws. Nordic Journal of Philosophical Logic, 1(1):11–
60, 1996.

[4] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
Cambridge, Massachusetts, 2nd edition edition, 1994.

LECTURE NOTES AUGUST 29, 2006

L1.14 Logic Programming

LECTURE NOTES AUGUST 29, 2006

15-819K: Logic Programming

Lecture 2

Data Structures

Frank Pfenning

August 31, 2006

In this second lecture we introduce some simple data structures such as
lists, and simple algorithms on them such as as quicksort or mergesort.
We also introduce some first considerations of types and modes for logic
programs.

2.1 Lists

Lists are defined by two constructors: the empty list nil and the constructor
cons which takes an element and a list, generating another list. For exam-
ple, the list a, b, c would be represented as cons(a, cons(b, cons(c, nil))). The
official Prolog notation for nil is [], and for cons(h, t) is .(h, t), overload-
ing the meaning of the period ‘.’ as a terminator for clauses and a binary
function symbol. In practice, however, this notation for cons is rarely used.
Instead, most Prolog programs use [h|t] for cons(h, t).

There is also a sequence notation for lists, so that a, b, c can be writ-
ten as [a, b, c]. It could also be written as [a | [b | [c | []]]] or
[a, b | [c, []]]. Note that all of these notations will be parsed into the
same internal form, using nil and cons. We generally follow Prolog list no-
tation in these notes.

2.2 Type Predicates

We now return to the definition of plus from the previous lecture, except
that we have reversed the order of the two clauses.

plus(z, N, N).

plus(s(M), N, s(P)) :- plus(M, N, P).

LECTURE NOTES AUGUST 31, 2006

L2.2 Data Structures

In view of the new list constructors for terms, the first clause now looks
wrong. For example, with this clause we can prove

plus(s(z), [a, b, c], s([a, b, c])).

This is absurd: what does it mean to add 1 and a list? What does the term
s([a, b, c]) denote? It is clearly neither a list nor a number.

From the modern programming language perspective the answer is
clear: the definition above lacks types. Unfortunately, Prolog (and tradi-
tional predicate calculus from which it was originally derived) do not dis-
tinguish terms of different types. The historical answer for why these lan-
guages have just a single type of terms is that types can be defined as unary
predicates. While this is true, it does not account for the pragmatic advan-
tage of distinguishing meaningful propositions from those that are not. To
illustrate this, the standard means to correct the example above would be
to define a predicate nat with the rules

nat(z)
nz

nat(N)

nat(s(N))
ns

and modify the base case of the rules for addition

nat(N)

plus(z, N,N)
pz

plus(M,N,P)

plus(s(M),N, s(P))
ps

One of the problems is that now, for example, plus(z, nil, nil) is false, when it
should actually be meaningless. Many problems in debugging Prolog pro-
grams can be traced to the fact that propositions that should be meaningless
will be interpreted as either true or false instead, incorrectly succeeding or
failing. If we transliterate the above into Prolog, we get:

nat(z).

nat(s(N)) :- nat(N).

plus(z, N, N) :- nat(N).

plus(s(M), N, s(P)) :- plus(M, N, P).

No self-respecting Prolog programmer would write the plus predicate this
way. Instead, he or she would omit the type test in the first clause leading
to the earlier program. The main difference between the two is whether
meaningless clauses are false (with the type test) or true (without the type
test). One should then annotate the predicate with the intended domain.

LECTURE NOTES AUGUST 31, 2006

Data Structures L2.3

% plus(m, n, p) iff m + n = p for nat numbers m, n, p.

plus(z, N, N).

plus(s(M), N, s(P)) :- plus(M, N, P).

It would be much preferable from the programmer’s standpoint if this
informal comment were a formal type declaration, and an illegal invocation
of plus were a compile-time error rather than leading to silent success or
failure. There has been some significant research on types systems and type
checking for logic programming languages [5] and we will talk about types
more later in this course.

2.3 List Types

We begin with the type predicates defining lists.

list([]).

list([X|Xs]) :- list(Xs).

Unlike languages such as ML, there is no test whether the elements of a list
all have the same type. We could easily test whether something is a list of
natural numbers.

natlist([]).

natlist([N|Ns]) :- nat(N), natlist(Ns).

The generic test, whether we are presented with a homogeneous list, all of
whose elements satisfy some predicate P, would be written as:

plist(P, []).

plist(P, [X|Xs]) :- P(X), plist(P, Xs).

While this is legal in some Prolog implementations, it can not be justified
from the underlying logical foundation, because P stands for a predicate
and is an argument to another predicate, plist. This is the realm of higher-
order logic, and a proper study of it requires a development of higher-order
logic programming [3, 4]. In Prolog the goal P(X) is a meta-call, often written
as call(P(X)). We will avoid its use, unless we develop higher-order logic
programming later in this course.

2.4 List Membership and Disequality

As a second example, we consider membership of an element in a list.

member(X, cons(X,Y s))

member(X,Y s)

member(X, cons(Y, Y s))

LECTURE NOTES AUGUST 31, 2006

L2.4 Data Structures

In Prolog syntax:

% member(X, Ys) iff X is a member of list Ys

member(X, [X|Ys]).

member(X, [Y|Ys]) :- member(X, Ys).

Note that in the first clause we have omitted the check whether Ys is a
proper list, making it part of the presupposition that the second argument
to member is a list.

Already, this very simple predicate has some subtle points. To show
the examples, we use the Prolog notation ?- A. for a query A. After pre-
senting the first answer substitution, Prolog interpreters issue a prompt to
see if another solution is desired. If the user types ‘;’ the interpreter will
backtrack to see if another solution can be found. For example, the query

?- member(X, [a,b,a,c]).

has four solutions, in the order

X = a;

X = b;

X = a;

X = c.

Perhaps surprisingly, the query

?- member(a, [a,b,a,c]).

succeeds twice (both with the empty substitution), once for the first occur-
rence of a and once for the second occurrence.

If member is part of a larger program, backtracking of a later goal could
lead to unexpected surprises when member succeeds again. There could
also be an efficiency issue. Assume you keep the list in alphabetical order.
Then when we find the first matching element there is no need to traverse
the remainder of the list, although the member predicate above will always
do so.

So what do we do if we want to only check membership, or find the first
occurrence of an element in a list? Unfortunately, there is no easy answer,
because the most straighforward solution

member(X, cons(X,Y s))

X 6= Y member(X,Y s)

member(X, cons(Y, Y s))

requires disequality which is problematic in the presence of variables. In
Prolog notation:

LECTURE NOTES AUGUST 31, 2006

Data Structures L2.5

member1(X, [X|Ys]).

member1(X, [Y|Ys]) :- X \= Y, member1(X, Ys).

When both arguments are ground, this works as expected, giving just one
solution to the query

?- member1(a, [a,b,a,c]).

However, when we ask

?- member1(X, [a,b,a,c]).

we only get one answer, namely X = a. The reason is that when we come
to the second clause, we instantiate Y to a and Ys to [b,a,c], and the body
of the clause becomes

X \= a, member1(X, [b,a,c]).

Now we have the problem that we cannot determine if X is different from
a, because X is still a variable. Prolog interprets s 6= t as non-unifiability, that
is, s 6= t succeeds of s and t are not unifiable. But X and a are unifiable, so
the subgoal fails and no further solutions are generated.1

There are two attitudes we can take. One is to restrict the use of dis-
equality (and, therefore, here also the use of member1) to the case where
both sides have no variables in them. In that case disequality can be easily
checked without problems. This is the solution adopted by Prolog, and one
which we adopt for now.

The second one is to postpone the disequality s 6= t until we can tell
from the structure of s and t that they will be different (in which case we
succeed) or the same (in which case the disequality fails). The latter so-
lution requires a much more complicated operational semantics because
some goals must be postponed until their arguments become instantiated.
This is the general topic of constructive negation2 [1] in the setting of con-
straint logic programming [2, 6], which we will address later in the course.

Disequality is related to the more general question of negation, because
s 6= t is the negation of equality, which is a simple predicate that is either
primitive, or could be defined with the one clause X = X.

1One must remember, however, that in Prolog unification is not sound because it omits
the occurs-check, as hinted at in the previous lecture. This also affects the correctness of
disequality.

2The use of the word “constructive” here is unrelated to its use in logic.

LECTURE NOTES AUGUST 31, 2006

L2.6 Data Structures

2.5 Simple List Predicates

After the member predicate generated some interesting questions, we ex-
plore some other list operations. We start with prefix(xs, ys) which is sup-
posed to hold when the list xs is a prefix of the list ys. The definition is
relatively straightforward.

prefix([], Ys).

prefix([X|Xs], [X|Ys]) :- prefix(Xs, Ys).

Conversely, we can test for a suffix.

suffix(Xs, Xs).

suffix(Xs, [Y|Ys]) :- suffix(Xs, Ys).

Interestingly, these predicates can be used in a variety of ways. We can
check is one list is a prefix of another, we can enumerate prefixes, and we
can even enumerate prefixes and lists. For example:

?- prefix(Xs,[a,b,c,d]).

Xs = [];

Xs = [a];

Xs = [a,b];

Xs = [a,b,c];

Xs = [a,b,c,d].

enumerates all prefixes, while

?- prefix(Xs,Ys).

Xs = [];

Xs = [A]

Ys = [A|_];

Xs = [A,B]

Ys = [A,B|_];

Xs = [A,B,C]

Ys = [A,B,C|_];

Xs = [A,B,C,D]

Ys = [A,B,C,D|_];

...

LECTURE NOTES AUGUST 31, 2006

Data Structures L2.7

enumerates lists together with prefixes. Note that A, B, C, and D are vari-
ables, as is the underscore _ so that for example [A|_] represents any list
with at least one element.

A more general prediate is append(xs, ys, zs) which holds when zs is
the result of appending xs and ys.

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

append can also be used in different directions, and we can also employ it
for alternative definitions of prefix and suffix.

prefix2(Xs, Ys) :- append(Xs, _, Ys).

suffix2(Xs, Ys) :- append(_, Xs, Ys).

Here we have used anonymous variables ‘_’. Note that when several un-
derscores appear in a clauses, each one stands for a different anonymous
variable. For example, if we want to define a sublist as a suffix of a pre-
fix, we have to name the intermediate variable instead of leaving it anony-
mous.

sublist(Xs, Ys) :- prefix(Ps, Ys), suffix(Xs, Ps).

This definition of sublist has some shortcomings (see Exercise 2.1).

2.6 Sorting

As a slightly larger example, we use a recursive definition of quicksort.
This is particularly instructive as it clarifies the difference between a speci-
fication and an implemention. A specification for sort(xs, ys) would simply
say that ys is an ordered permutation of xs. However, this specification is
not useful as an implementation: we do not want to cycle through all pos-
sible permutations until we find one that is ordered.

Instead we implement a non-destructive version of quicksort, modeled
after similar implementations in functional programming. We use here the
built-in Prolog integers, rather than the unary representation from the pre-
vious lecture. Prolog integers can be compared with n =< m (n is less or
equal to m) and n > m (n is greater than m) and similar predicates, writ-
ten in infix notation. In order for these comparisons to make sense, the
arguments must be instantiated to actual integers and are not allowed to
be variables, which constitute a run-time error. This combines two condi-
tions: one which is called a mode is that =< and < require their arguments

LECTURE NOTES AUGUST 31, 2006

L2.8 Data Structures

to be ground upon invocation, that is not contain any variables. The second
condition is a type condition which requires the arguments to be integers.
Since these conditions can not be enforced at compile time, they are sig-
naled as run-time errors.

Quicksort proceeds by partitioning the tail of the input list into those
elements that are smaller than or equal to its first element and those that
are larger than its first element. It then recursively sorts the two sublists
and appends the results.

quicksort([], []).

quicksort([X0|Xs], Ys) :-

partition(Xs, X0, Ls, Gs),

quicksort(Ls, Ys1),

quicksort(Gs, Ys2),

append(Ys1, [X0|Ys2], Ys).

Partitioning a list about the pivot element X0 is also straightforward.

partition([], _, [], []).

partition([X|Xs], X0, [X|Ls], Gs) :-

X =< X0, partition(Xs, X0, Ls, Gs).

partition([X|Xs], X0, Ls, [X|Gs]) :-

X > X0, partition(Xs, X0, Ls, Gs).

Note that the second and third case are both guarded by comparisons. This
will fail if either X or X0 are uninstantiated or not integers. The predicate
partition(xs, x0, ls, gs) therefore inherits a mode and type restric-
tion: the first argument must be a ground list of integers and the second
argument must be a ground integer. If these conditions are satisfied and
partition succeeds, the last two arguments will always be lists of ground
integers. In a future lecture we will discuss how to enforce conditions of
this kind to discover bugs early. Here, the program is small, so we can get
by without mode checking and type checking.

It may seem that the check X > X0 in the last clause is redundant. How-
ever, that is not the case because upon backtracking we might select the
second clause, even if the first one succeeded earlier, leading to an incor-
rect result. For example, without this guard the query

?- quicksort([2,1,3], Ys)

would incorrectly return Ys = [2,1,3] as its second solution.

LECTURE NOTES AUGUST 31, 2006

Data Structures L2.9

In this particular case, the test is trivial so the overhead is acceptable.
Sometimes, however, a clause is guarded by a complicated test which takes
a long time to evaluate. In that case, there is no easy way to avoid evaluat-
ing it twice, in pure logic programming. Prolog offers several ways to work
around this limitation which we discuss in the next section.

2.7 Conditionals

We use the example of computing the minimum of two numbers as an ex-
ample analogous to partition, but shorter.

minimum(X, Y, X) :- X =< Y.

minimum(X, Y, Y) :- X > Y.

In order to avoid the second, redundant test we can use Prolog’s condi-
tional construct, written as

A -> B ; C

which solves goal A. If A succeeds we commit to the solution, removing
all choice points created during the search for a proof of A and then solve
B. If A fails we solve C instead. There is also a short form A -> B which is
equivalent to A -> B ; fail where fail is a goal that always fails.

Using the conditional, minimum can be rewritten more succinctly as

minimum(X, Y, Z) :- X =< Y -> Z = X ; Z = Y.

The price that we pay here is that we have to leave the realm of pure logic
programming.

Because the conditional is so familiar from imperative and functional
program, there may be a tendency to overuse the conditional when it can
easily be avoided.

2.8 Cut

The conditional combines two ideas: commiting to all choices so that only
the first solution to a goal will be considered, and branching based on that
first solution.

A more powerful primitive is cut, written as ‘!’, which is unrelated to
the use of the word “cut” in proof theory. A cut appears in a goal position
and commits to all choices that have been made since the clause it appears
in has been selected, including the choice of that clause. For example, the
following is a correct implementation of minimum in Prolog.

LECTURE NOTES AUGUST 31, 2006

L2.10 Data Structures

minimum(X, Y, Z) :- X =< Y, !, Z = X.

minimum(X, Y, Y).

The first clause states that if x is less or equal to y than the minimum is equal
to x. Moreover, we commit to this clause in the definition of minimum and
on backtracking we do not attempt to use the second clause (which would
otherwise be incorrect, of course).

If we permit meta-calls in clauses, then we can define the conditional
A -> B ; C using cut with

if_then_else(A, B, C) :- A, !, B.

if_then_else(A, B, C) :- C.

The use of cut in the first clause removes all choice points created during
the search for a proof of A when it succeeds for the first time, and also
commits to the first clause of if_then_else. The solution of B will create
choice points and backtrack as usual, except when it fails the second clause
of if_then_else will never be tried.

If A fails before the cut, then the second clause will be tried (we haven’t
committed to the first one) and C will be executed.

Cuts can be very tricky and are the source of many errors, because their
interpretation depends so much on the operational behavior of the pro-
gram rather than the logical reading of the program. One should resist the
temptation to use cuts excessively to improve the efficiency of the program
unless it is truly necessary.

Cuts are generally divided into green cuts and red cuts. Green cuts are
merely for efficiency, to remove redundant choice points, while red cuts
change the meaning of the program entirely. Revisiting the earlier code for
minimum we see that it is a red cut, since the second clause does not make
any sense by itself, but only because the the first clause was attempted be-
fore. The cut in

minimum(X, Y, Z) :- X =< Y, !, Z = X.

minimum(X, Y, Y) :- X > Y.

is a green cut: removing the cut does not change the meaning of the pro-
gram. It still serves some purpose here, however, because it prevents the
second comparison to be carried out if the first one succeeds (although it is
still performed redundantly if the first one fails).

A common error is exemplified by the following attempt to make the
minimum predicate more efficient.

LECTURE NOTES AUGUST 31, 2006

Data Structures L2.11

% THIS IS INCORRECT CODE

minimum(X, Y, X) :- X =< Y, !.

minimum(X, Y, Y).

At first this seems completely plausible, but it is nonetheless incorrect.
Think about it before you look at the counterexample at the end of these
notes—it is quite instructive.

2.9 Negation as Failure

One particularly interesting use of cut is to implement negation as finite
failure. That is, we say that A is false if the goal A fails. Using higher-order
techniques and we can implement \+(A) with

\+(A) :- A, !, fail.

\+(A).

The second clause seems completely contrary to the definition of negation,
so we have to interpret this program operationally. To solve \+(A) we first
try to solve A. If that fails we go the second clause which always succeeds.
This means that if A fails then \+(A) will succeed without instantiating
any variables. If A succeeds then we commit and fail, so the second clause
will never be tried. In this case, too, no variables are instantiated, this time
because the goal fails.

One of the significant problem with negation as failure is the treatment
of variables in the goal. That is, \+(A) succeeds if there is no instance of
A that is true. On the other hand, it fails if there is an instance of A that
succeeds. This means that free variables may not behave as expected. For
example, the goal

?- \+(X = a).

will fail. According the usual interpretation of free variables this would
mean that there is no term t such that t 6= a for the constant a. Clearly, this
interpretation is incorrect, as, for example,

?- \+(b = a).

will succeed.
This problem is similar to the issue we identified for disequality. When

goals may not be ground, negation as failure should be viewed with dis-
trust and is probably wrong more often than it is right.

There is also the question on how to reason about logic programs con-
taining disequality, negation as failure, or cut. I do not consider this to be a
solved research question.

LECTURE NOTES AUGUST 31, 2006

L2.12 Data Structures

2.10 Prolog Arithmetic

As mentioned and exploited above, integers are a built-in data type in Pro-
log with some predefined predicates such as =< or >. You should consult
your Prolog manual for other built-in predicates. There are also some built-
in operations such as addition, subtraction, multiplication, and division.
Generally these operations can be executed using a special goal of the form
t is e which evaluates the arithmetic expression e and unifies the result
with term t. If e cannot be evaluated to a number, a run-time error will re-
sult. As an example, here is the definition of the length predicate for Prolog
using built-in integers.

% length(Xs, N) iff Xs is a list of length N.

length([], 0).

length([X|Xs], N) :- length(Xs, N1), N is N1+1.

As is often the case, the left-hand side of the is predicate is a variable,
the right-hand side an expression. Of course, these variables cannot be
updated destructively.

2.11 Exercises

Exercise 2.1 Identify a shortcoming of the given definition of sublist and rewrite
it to avoid the problem.

Exercise 2.2 Write specifications ordered(xs) to check if the list xs of integers (as
built into Prolog) is in ascending order, and permutation(xs, ys) to check if ys is
a permutation of xs. Write a possibly very slow implementation of sort(xs, ys) to
check if ys is an ordered permutation of xs. It should be usable to sort a given list
xs.

Exercise 2.3 Quicksort is not the fastest way to sort in Prolog, which is reputedly
mergesort. Write a logic program for mergesort(xs, ys) for lists of integers as built
into Prolog.

Exercise 2.4 The Dutch national flag problem is to take a list of elements that are
either red, white, or blue and return a list with all red elements first, followed by all
white elements, with all blue elements last (the order in which they appear on the
Dutch national flag). We represent the property of being red, white, or blue with
three predicates, red(x), white(x), and blue(x). You may assume that every
element of the input list satisfies exactly one of these three predicates.

LECTURE NOTES AUGUST 31, 2006

Data Structures L2.13

Write a Prolog program to solve the Dutch national flag problem. Try to take
advantage of the intrinsic expressive power of logic programming to obtain an
elegant program.

2.12 Answer

The problem is that a query such as

?- minimum(5,10,10).

will succeed because is fails to match the first clause head.
The general rule of thumb is to leave output variables (here: in the third

position) unconstrained free variables and unify it with the desired output
after the cut. This leads to the earlier version of minimum using cut.

2.13 References

[1] D. Chan. Constructive negation based on the complete database. In
R.A. Kowalski and K.A. Bowen, editors, Proceedings of the 5th Interna-
tional Conference and Symposium on Logic Programming (ICSLP’88), pages
111–125, Seattle, Washington, September 1988. MIT Press.

[2] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the 14th Annual Symposium on Principles of Programming
Languages, pages 111–119, Munich, Germany, January 1987. ACM Press.

[3] Dale Miller and Gopalan Nadathur. Higher-order logic programming.
In Ehud Shapiro, editor, Proceedings of the Third International Logic Pro-
gramming Conference, pages 448–462, London, June 1986.

[4] Gopalan Nadathur and Dale Miller. Higher-order logic programming.
In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 5, chapter 8.
Oxford University Press, 1998.

[5] Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cam-
bridge, Massachusetts, 1992.

[6] Peter J. Stuckey. Constructive negation for constraint logic program-
ming. In Proceedings of the 6th Annual Symposium on Logic in Computer
Science (LICS’91), pages 328–339, Amsterdam, The Netherlands, July
1991. IEEE Computer Society Press.

LECTURE NOTES AUGUST 31, 2006

L2.14 Data Structures

LECTURE NOTES AUGUST 31, 2006

15-819K: Logic Programming

Lecture 3

Induction

Frank Pfenning

September 5, 2006

One of the reasons we are interested in high-level programming lan-
guages is that, if properly designed, they allow rigorous reasoning about
properties of programs. We can prove that our programs won’t crash, or
that they terminate, or that they satisfy given specifications. Logic pro-
grams are particularly amenable to formal reasoning.

In this lecture we explore induction, with an emphasis on induction on
the structure of deductions sometimes called rule induction in order to prove
properties of logic programs.

3.1 From Logical to Operational Meaning

A logic program has multiple interpretations. One is as a set of inference
rules to deduce logical truths. Under this interpretation, the order in which
the rules are written down, or the order in which the premisses to a rule are
listed, are completely irrelevant: the true propositions and even the struc-
ture of the proofs remain the same. Another interpretation is as a program,
where proof search follows a fixed strategy. As we have seen in prior lec-
tures, both the order of the rules and the order of the premisses of the rules
play a significant role and can make the difference between a terminating
and a non-terminating computation and in the order in which answer sub-
stitutions are returned.

The different interpretations of logic programs are linked. The strength
of that link depends on the presence or absence of purely operational con-
structs such as conditionals or cut, and on the details of the operational
semantics that we have not yet discussed.

The most immediate property is soundness of the operational semantics:
if a query A succeeds with a substitution θ, then the result of applying the

LECTURE NOTES SEPTEMBER 5, 2006

L3.2 Induction

substitution θ to A (written Aθ) is true under the logical semantics. In other
words, Aθ has a proof. This holds for pure logic programs but does not
hold in the presence of logic variables together with negation-as-failure, as
we have seen in the last lecture.

Another property is completeness of the operational semantics: if there is
an instance of the query A that has a proof, then the query should succeed.
This does not hold, since logic programs do not necessarily terminate even
if there is a proof.

But there are some intermediate points. For example, the property of
non-deterministic completeness says that if the interpreter were always al-
lowed to choose which rule to use next rather than having to use the first
applicable one, then the interpreter would be complete. Pure logic pro-
grams are complete in this sense. This is important because it allows us to
interpret finite failure as falsehood: if the interpreter returns with the an-
swer ‘no’ it has explored all possible choices. Since none of them has led
to a proof, and the interpreter is non-deterministically complete, we know
that no proof can exist.

Later in the course we will more formally establish soundness and non-
deterministic completeness for pure logic programs. It is relevant for this
lecture, because when we want to reason about logic programs it is impor-
tant to consider at which level of abstraction this reasoning takes place: Do
we consider the logical meaning? Or the operational meaning including
the backtracking behavior? Or perhaps the non-deterministic operational
meaning? Making a mistake here could lead to a misinterpretation of the
theorem we proved, or to a large amount of unnecessary work. We will
point out such consequences as we go through various forms of reasoning.

3.2 Rule Induction

We begin by reasoning about the logical meaning of programs. As a simple
example, we go back to the unary encoding of natural numbers from the
first lecture. For reference we repeat the predicates for even and plus

even(z)
evz

even(N)

even(s(s(N)))
evs

plus(z, N,N)
pz

plus(M,N,P)

plus(s(M),N, s(P))
ps

Our aim is to prove that the sum of two even numbers is even. It is not

LECTURE NOTES SEPTEMBER 5, 2006

Induction L3.3

immediately obvious how we can express this property on the relational
specification. For example, we might say:

For any m, n, and p, if even(m) and even(n) and plus(m,n, p) then
even(p).

Or we could expressly require the existence of a sum p and the fact that it
is even:

For any m, n, if even(m) and even(n) then there exists a p such that
plus(m,n, p) and even(p).

If we knew that plus is a total function in its first two arguments (that is,
“For any m and n there exists a unique p such that plus(m,n, p).”), then these
two would be equivalent (see Exercise 3.2).

We will prove it in the second form. The first idea for this proof is usu-
ally to examine the definition of plus and see that it is defined structurally
over its first argument m: the rule pz accounts for z and the rule ps reduces
s(m) to m. This suggests an induction over m. However, in the predicate
calculus (and therefore also in our logic programming language), m can be
an arbitrary term and is therefore not a good candidate for induction.

Looking at the statement of the theorem, we see we are given the in-
formation that even(m). This means that we have a deduction of even(m)
using only the two rules evz and evs, since we viewed these two rules as
a complete definition of the predicate even(m). This licenses us to proceed
by induction on the structure of the deduction of even(m). This is some-
times called rule induction. If we want to prove a property for all proofs of a
judgment, we consider each rule in turn. We may assume the property for
all premisses of the rule and have to show that it holds for the conclusion.
If we can show this for all rules, we know the property must hold for all
deductions.

In our proofs, we will need names for deductions. We use script letters
D, E , and so on, to denote deduction and use the two-dimensional notation

D
J

if D is a deduction of J .

Theorem 3.1 For any m, n, if even(m) and even(n) then there exists a p such
that plus(m,n, p) and even(p).

Proof: By induction on the structure of the deduction D of even(m).

LECTURE NOTES SEPTEMBER 5, 2006

L3.4 Induction

Case: D =
even(z)

evz where m = z.

even(n) Assumption
plus(z, n, n) By rule pz

There exists p such that plus(z, n, p) and even(p) Choosing p = n

Case: D =

D′

even(m′)

even(s(s(m′)))
evs where m = s(s(m′)).

even(n) Assumption
plus(m′, n, p′) and even(p′) for some p′ By ind. hyp. on D′

plus(s(m′), n, s(p′)) By rule ps

plus(s(s(m′)), n, s(s(p′))) By rule ps

even(s(s(p′))) By rule evs

There exists p such that plus(s(s(m′)), n, p) and even(p)
Choosing p = s(s(p′)).

2

We have written here the proof in each case line-by-line, with a justi-
fication on the right-hand side. We will generally follow this style in this
course, and you should arrange the answers to exercises in the same way
because it makes proofs relatively easy to check.

3.3 Deductions and Proofs

One question that might come to mind is: Why did we have to carry out an
inductive proof by hand in the first place? Isn’t logic programming proof
search according to a fixed strategy, so can’t we get the operational seman-
tics to do this proof for us?

Unfortunately, logic programming search has some severe restrictions
so that it is usable as a programming language and has properties such as
soundness and non-deterministic completeness. The restrictions are placed
both on the forms of programs and the forms of queries. So far, in the
logic that underlies Prolog, rules establish only atomic predicates. Further-
more, we can only form queries that are conjunctions of atomic proposi-
tions, possibly with some variables. This means that queries are purely ex-
istential: we asked whether there exists some instantiation of the variables

LECTURE NOTES SEPTEMBER 5, 2006

Induction L3.5

so that there exists a proof for the resulting proposition as in the query
?- plus(s(z), s(s(z)), P) where we simultaneously ask for a p and a
proof of plus(s(z), s(s(z)), p).

On the other hand, our theorem above is primarily universal and only
on the inside do we see an existential quantifier: “For every m and n, and for
every deduction D of even(m) and E of even(n) there exists a p and deductions F
of plus(m,n, p) and G of even(p).”

This difference is also reflected in the structure of the proof. In response
to a logic programming query we only use the inference rules defining the
predicates directly. In the proof of the theorem about addition, we instead
use induction in order to show that deductions of plus(m,n, p) and even(p)
exist. If you carefully look at our proof, you will see that it contains a recipe
for constructing these deductions from the given ones, but it does not con-
struct them by backward search as in the operational semantics for logic
programming. As we will see later in the course, it is in fact possible to
represent the induction proof of our first theorem also in logic program-
ming, although it cannot be found only by logic programming search.

We will make a strict separation between proofs using only the infer-
ence rules presented by the logic programmer and proofs about these rules.
We will try to be consistent and write deduction for a proof constructed di-
rectly with the rules and proof for an argument about the logical or opera-
tional meaning of the rules. Similarly, we reserve the terms proposition, goal,
and query for logic programs, and theorem for properties of logic programs.

3.4 Inversion

An important step in many induction proofs is inversion. The simplest form
of inversion arises if have established that a certain proposition is true, and
that the proposition matches the conclusion of only one rule. In that case
we know that this rule must have been used, and that all premisses of the
rule must also be true. More generally, if the proposition matches the con-
clusion of several rules, we can split the proof into cases, considering each
one in turn.

However, great care must be taken with applying inversion. In my ex-
perience, the most frequent errors in proofs, both by students in courses
such as this and in papers submitted to or even published in journals, are
(a) missed cases that should have been considered, and (b) incorrect appli-
cations of inversion. We can apply inversion only if we already know that a
judgment has a deduction, and then we have to take extreme care to make
sure that we are indeed considering all cases.

LECTURE NOTES SEPTEMBER 5, 2006

L3.6 Induction

As an example we prove that the list difference is uniquely determined,
if it exists. As a reminder, the definition of append in rule form. We use the
Prolog notation [] for the empty list, and [x|xs] for the list with head x and
tails xs.

append([], ys, ys)
apnil

append(xs, ys, zs)

append([x|xs], ys, [x|zs])
apcons

We express this in the following theorem.

Theorem 3.2 For all xs and zs and for all ys and ys′, if append(xs, ys, zs) and
append(xs, ys′, zs) then ys = ys′.

Proof: By induction on the deduction D of append(xs, ys, zs). We use E to
denote the given deduction append(xs, ys′, zs).

Case: D =
append([], ys, ys)

where xs = [] and zs = ys.

append([], ys′, ys) Given deduction E

ys′ = ys By inversion on E (rule apnil)

Case: D =

D1

append(xs1, ys, zs1)

append([x|xs1], ys, [x|zs1])
where xs = [xs|xs1], zs = [xs|zs1].

append([x|xs1], ys′, [x|zs1]) Given deduction E

append(xs1, ys′, zs1) By inversion on E (rule apcons)
ys = ys′ By ind. hyp. on D1

2

3.5 Operational Properties

We do not yet have formally described the operational semantics of logic
programs. Therefore, we cannot prove operational properties completely
rigorously, but we can come close by appealing to the intuitive semantics.
Consider the following perhaps somewhat unfortunate specification of the
predicate digit for decimal digits in unary notation, that is, natural numbers
between 0 and 9.

digit(s(s(s(s(s(s(s(s(s(z))))))))))

digit(s(N))

digit(N)

LECTURE NOTES SEPTEMBER 5, 2006

Induction L3.7

For example, we can deduce that z is a digit by using the second rule nine
times (working bottom up) and then closing of the deduction with the first
rule. In Prolog notation:

digit(s(s(s(s(s(s(s(s(s(z)))))))))).

digit(N) :- digit(s(N)).

While logically correct, this does not work correctly as a decision proce-
dure, because it will not terminate for any argument greater than 9.

Theorem 3.3 Any query ?- digit(n) for n > 9 will not terminate.

Proof: By induction on the computation. If n > 9, then the first clause
cannot apply. Therefore, the goal digit(n) must be reduced to the subgoal
digit(s(n)) by the second rule. But s(n) > 9 if n > 9, so by induction
hypothesis the subgoal will not terminate. Therefore the original goal also
does not terminate. 2

3.6 Aside: Forward Reasoning and Saturation

As mentioned in the first lecture, there is a completely different way to
interpret inference rules as logic programs than the reading that underlies
Prolog. This idea is to start with axioms (that is, inference rules with no
premisses) as logical truths and apply all rules in the forward direction,
adding more true propositions. We stop when any rule application that we
could perform does not change the set of true propositions. In that case
we say the database of true propositions is saturated. In order to answer a
query we can now just look it up in the saturated database: if an instance
of the query is in the database, we succeed, otherwise we fail.

In the example from above, we start with a database consisting only of
digit(s(s(s(s(s(s(s(s(s(z)))))))))). We can apply the second rule with this as
a premiss to conclude that digit(s(s(s(s(s(s(s(s(z))))))))). We can repeat this
process a few more times until we finally conclude digit(z). At this point,
any further rule applications would only add facts with already know: the
set is saturated. We see that, consistent with the logical meaning, only the
numbers 0 through 9 are digits, other numbers are not.

In this example, the saturation-based operational semantics via forward
reasoning worked well for the given rules, while backward reasoning did
not. There are classes of algorithms which appear to be easy to describe
via saturation, that appear significantly more difficult with backward rea-
soning and vice versa. We will therefore return to forward reasoning and

LECTURE NOTES SEPTEMBER 5, 2006

L3.8 Induction

saturation later in the class, and also consider how it may be integrated
with backward reasoning in a logical way.

3.7 Historical Notes

The idea to mix reasoning about rules with the usual logic programming
search goes back to work by Eriksson and Hallnäs [2] which led to the
GCLA logic programming language [1]. However, it stops short of sup-
porting full induction. More recently, this line of development been revived
by Tiu, Nadathur, and Miller [9]. Some of these ideas are embodied in the
Bedwyr system currently under development.

Another approach is to keep the layers separate, but provide means
to express proofs of properties of logic programs again as logic programs,
as proposed by Schürmann [8]. These ideas are embodied in the Twelf
system [6].

Saturating forward search has been the mainstay of the theorem prov-
ing community since the pioneering work on resolution by Robinson [7].
In logic programming, it has been called bottom-up evaluation and has his-
torically been applied mostly in the context of databases [5] where satura-
tion can often be guaranteed by language restrictions. Recently, it has been
revisited as a tool for algorithm specification and complexity analysis by
Ganzinger and McAllester [3, 4].

3.8 Exercises

The proofs requested below should be given in the style presented in these
notes, with careful justification for each step of reasoning. If you need a
lemma that has not yet been proven, carefully state and prove the lemma.

Exercise 3.1 Prove that the sum of two even numbers is even in the first form
given in these notes.

Exercise 3.2 Prove that plus(m,n, p) is a total function of its first two arguments
and exploit this property to prove carefully that the two formulations of the prop-
erty that the sum of two even numbers is even, are equivalent.

Exercise 3.3 Prove that times(m,n, p) is a total function of its first two argu-
ments.

Exercise 3.4 Give a relational interpretation of the claim that “addition is com-
mutative” and prove it.

LECTURE NOTES SEPTEMBER 5, 2006

Induction L3.9

Exercise 3.5 Prove that for any list xs, append(xs, [], xs).

Exercise 3.6 Give two alternative relational interpretations of the statement that
“append is associative.” Prove one of them.

Exercise 3.7 Write a logic program to reverse a given list and prove that when
reversing the reversed list, we obtain the original list.

Exercise 3.8 Prove the correctness of quicksort from the previous lecture with re-
spect to the specification from Exercise 2.2: If quicksort(xs, ys) is true then
the second argument is an ordered permutation of the first. Your proof should be
with respect to logic programs to check whether a list is ordered, and whether one
list is a permutation of another.

3.9 References

[1] M. Aronsson, L.-H. Eriksson, A. Gäredal, L. Hallnäs, and P. Olin. The
programming language GCLA—a definitional approach to logic pro-
gramming. New Generation Computing, 7(4):381–404, 1990.

[2] Lars-Henrik Eriksson and Lars Hallnäs. A programming calculus
based on partial inductive definitions. SICS Research Report R88013,
Swedish Institute of Computer Science, 1988.

[3] Harald Ganzinger and David A. McAllester. A new meta-complexity
theorem for bottom-up logic programs. In T.Nipkow R.Goré, A.Leitsch,
editor, Proceedings of the First International Joint Conference on ArAuto-
mated Reasoning (IJCAR’01), pages 514–528, Siena, Italy, June 2001.
Springer-Verlag LNCS 2083.

[4] Harald Ganzinger and David A. McAllester. Logical algorithms. In
P. Stuckey, editor, Proceedings of the 18th International Conference on
Logic Programming, pages 209–223, Copenhagen, Denmark, July 2002.
Springer-Verlag LNCS 2401.

[5] Jeff Naughton and Raghu Ramakrishnan. Bottom-up evaluation of
logic programs. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic. Essays in Honor of Alan Robinson, pages 640–700. MIT Press, Cam-
bridge, Massachusetts, 1991.

[6] Frank Pfenning and Carsten Schürmann. System description: Twelf —
a meta-logical framework for deductive systems. In H. Ganzinger, ed-
itor, Proceedings of the 16th International Conference on Automated Deduc-
tion (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag
LNAI 1632.

LECTURE NOTES SEPTEMBER 5, 2006

L3.10 Induction

[7] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, January 1965.

[8] Carsten Schürmann. Automating the Meta Theory of Deductive Systems.
PhD thesis, Department of Computer Science, Carnegie Mellon Uni-
versity, August 2000. Available as Technical Report CMU-CS-00-146.

[9] Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite suc-
cess and finite failure in an automated prover. In C.Benzmüller,
J.Harrison, and C.Schürmann, editors, Proceedings of the Workshop on
Empirically Successful Automated Reasnoing in Higher-Order Logics (ES-
HOL’05), pages 79–98, Montego Bay, Jamaica, December 2005.

LECTURE NOTES SEPTEMBER 5, 2006

15-819K: Logic Programming

Lecture 4

Operational Semantics

Frank Pfenning

September 7, 2006

In this lecture we begin in the quest to formally capture the operational
semantics in order to prove properties of logic programs that depend on the
way proof search proceeds. This will also allow us to relate the logical and
operational meaning of programs to understand deeper properties of logic
programs. It will also form the basis to prove the correctness of various
form of program analysis, such as type checking or termination checking,
to be introduced later in the class.

4.1 Explicating Choices

To span the distance between the logical and the operational semantics we
have to explicate a series of choices that are fixed when proof search pro-
ceeds. We will proceed in this order:

1. Left-to-right subgoal selection. In terms of inference rules, this means
that we first search for a proof of the first premiss, then the second,
etc.

2. First-to-last clause selection and backtracking. In terms of inference
rules this means when more than one rule is applicable, we begin by
trying the one listed first, then the one listed second, etc.

3. Unification. In terms of inference rules this means when we decide
how to instantiate the schematic variables in a rule and the unknowns
in a goal, we use a particular algorithm to find the most general uni-
fier between the conclusion of the rule and the goal.

LECTURE NOTES SEPTEMBER 7, 2006

L4.2 Operational Semantics

4. Cut. This has no reflection at the level of inference rules. We have to
specify how we commit to particular choices made so far when we
encounter a cut or another control constructs such as a conditional.

5. Other built-in predicates. Prolog has other built-in predicates for
arithmetic, input and output, changing the program at run-time, for-
eign function calls, and more which we will not treat formally.

It is useful not to jump directly to the most accurate and low-level se-
mantics, because we often would like to reason about properties of pro-
grams that are independent of such detail. One set of examples we have
already seen: we can reason about the logical semantics to establish prop-
erties such as that the sum of two even numbers is even. In that case we are
only interested in successful computations, and how we searched for them
is not important. Another example is represented by cut: if a program does
not contain any cuts, the complexity of the semantics that captures it is un-
warranted.

4.2 Definitional Intpreters

The general methodology we follow goes back to Reynolds [3], adapted
here to logic programming. We can write an interpreter for a language
in the language itself (or a very similar language), a so-called definitional
interpreter, meta-interpreter, or meta-circular interpreter. This may fail to com-
pletely determine the behavior of the language we are studying (the object
language), because it may depend on the behavior of the language in which
we write the definition (the meta-language), and the two are the same! We
then transform the definitional interpreter, removing some of the advanced
features of the language we are defining, so that now the more advanced
constructs are explained in terms of simpler ones, removing circular as-
pects. We can interate the process until we arrive at the desired level of
specification.

For Prolog (although not pure first-order logic programming), the sim-
plest meta-interpreter, hardly deserving the name, is

solve(A) :- A.

To interpret the argument to solve as a goal, we simply execute it using the
meta-call facility of Prolog.

This does not provide a lot of insight, but it brings up the first issue:
how do we represent logic programs and goals in order to execute them

LECTURE NOTES SEPTEMBER 7, 2006

Operational Semantics L4.3

in our definitional interpreter? In Prolog, the answer is easy: we think of
the comma which separates the subgoal of a clause as a binary function
symbol denoting conjunction, and we think of the constant true which al-
ways succeeds as just a constant. One can think of this as replicating the
language of predicates in the language of function symbols, or not distin-
guishing between the two. The code above, if it were formally justified
using higher-order logic, would take the latter approach: logical connec-
tives are data and can be treated as such. In the next interpreter we take
the first approach: we overload comma to separate subgoals in the meta-
language, but we also use it as a function symbol to describe conjunction
in the object language. Unlike in the code above, we will not mix the two.
The logical constant true is similarly overloaded as a predicate constant of
the same name.

solve(true).

solve((A , B)) :- solve(A), solve(B).

solve(P) :- clause(P, B), solve(B).

In the second clause, the head solve((A , B)) employs infix notation,
and could be written equivalently as solve(’,’(A, B)).1 The additional
pair of parentheses is necessary since solve(A , B) would be incorrectly
seen as a predicate solve with two arguments.

The predicate clause/2 is a built-in predicate of Prolog.2 The subgoal
clause(P, B) will unify P with the head of each program clause and B

with the corresponding body. In other words, if clause(P, B) succeeds,
then P :- B. is an instance of a clause in the current program. Prolog will
try to unify P and B with the clauses of the current program first-to-last,
so that the above meta-interpreter will work correctly with respect to the
intuitive semantics explained earlier.

There is a small amount of standardization in that a clause P. in the
program with an empty body is treated as if it were P :- true.

This first interpreter does not really explicate anything: the order in
which subgoals are solved in the object language is the same as the order
in the meta-language, according to the second clause. The order in which
clauses are tried is the order in which clause/2 delivers them. And unifi-
cation between the goal and the clause head is also inherited by the object

1In Prolog, we can quote an infix operator to use it as an ordinary function or predicate
symbol.

2In Prolog, it is customary to write p/n when refering to a predicate p of arity n, since
many predicates have different meanings at different arities.

LECTURE NOTES SEPTEMBER 7, 2006

L4.4 Operational Semantics

language from the meta-language through the unification carried out by
clause(P, B) between its first argument and the clause heads in the pro-
gram.

4.3 Subgoal Order

According to our outline, the first task is to modify our interpreter so that
the order in which subgoals are solved is made explicit. When encounter-
ing a goal (A , B) we push B onto a stack and solve A first. When A as
has been solved we then pop B off the stack and solve it. We could repre-
sent the stack as a list, but we find it somewhat more elegant to represent
the goal stack itself as a conjunction of goals because all the elements of
goal stack have to be solved for the overall goal to succeed.

The solve predicate now takes two arguments, solve(A, S) where A

is the goal, and S is a stack of yet unsolved goals. We start with the empty
stack, represented by true.

solve(true, true).

solve(true, (A , S)) :- solve(A, S).

solve((A , B), S) :- solve(A, (B , S)).

solve(P, S) :- clause(P, B), solve(B, S).

We explain each clause in turn.
If the goal is solved and the goal stack is empty, we just succeed.

solve(true, true).

If the goal is solved and the goal stack is non-empty, we pop the most
recent subgoal A of the stack and solve it.

solve(true, (A , S)) :- solve(A, S).

If the goal is a conjunction, we solve the first conjunct, pushing the sec-
ond one on the goal stack.

solve((A , B), S) :- solve(A, (B , S)).

When the goal is atomic, we match it against the heads of all clauses in
turn, solving the body of the clause as a subgoal.

solve(P, S) :- clause(P, B), solve(B, S).

We do not explicitly check that P is atomic, because clause(P, B) will
fail if it is not.

LECTURE NOTES SEPTEMBER 7, 2006

Operational Semantics L4.5

4.4 Subgoal Order More Abstractly

The interpreter from above works for pure Prolog as intended. Now we
would like to prove properties of it, such as its soundness: if it proves
solve(A, true) then it is indeed the case that A is true. In order to do
that it is advisable to reconstruct the interpreter above in logical form, so
we can use induction on the structure of deductions in a rigorous manner.

The first step is to define our first logical connective: conjunction! We
also need a propositional constant denoting truth. It is remarkable that
for all the development of logic programming so far, not a single logical
connective was needed, just atomic propositions, the truth judgment, and
deductions as evidence for truth.

When defining logical connectives we follow exactly the same ideas as
for defining atomic propositions: we define them via inference rules, spec-
ifying what counts as evidence for their truth.

A true B true

A ∧ B true
∧I

> true
>I

These rules are called introduction rules because they introduce a logical
connective in the conclusion.

Next we define a new judgment on propositions. Unlike A true this is
a binary judgment on two propositions. We write it A / S and read it as A

under S. We would like it to capture the logical form of solve(A, S). The
first three rules are straightforward, and revisit the corresponding rules for
solve/2.

> / >

A / S

> / A ∧ S

A / B ∧ S

A ∧ B / S

The last “rule” is actually a whole family of rules, one for each rule
about truth of atoms P .

B1 ∧ · · · ∧ Bm / S

P / S for each rule

B1 true . . . Bm true

P true

We write the premiss as > / S if m = 0, thinking of > as the empty con-
junction.

LECTURE NOTES SEPTEMBER 7, 2006

L4.6 Operational Semantics

It is important that the definitions of truth (A jtrue) and provability
under a stack-based search strategy (A / S) do not mutually depend on
each other so we can relate them cleanly.

Note that each rule of the new judgment A / S has either one or zero
premisses. In other words, if we do proof search via goal-directed search,
the question of subgoal order does not arise. It has explicitly resolved by
the introduction of a subgoal stack. We can now think of these rules as just
defining a transition relation, reading each rule from the conclusion to the
premiss. This transition relation is still non-deterministic, because more
than one rule could match an atomic predicate, but we will resolve this as
well as we make other aspects of the semantics more explicit.

4.5 Soundness

To show the soundness of the new judgment with respect to truth, we
would like to show that if A / > then A true . This, however, is not general
enough to prove by induction, since if A is a conjunction, the premiss will
have a non-empty stack and the induction hypothesis will not be applica-
ble. Instead we generalize the induction hypothesis. This is usually a very
difficult step; in this case, however, it is not very difficult to see what the
generalization should be.

Theorem 4.1 If A / S then A true and S true .

Proof: By induction on the structure of the deduction D of A / S.

Case: D =
> / >

where A = S = >.

A true By A = > and rule >I

S true By S = > and rule >I

Case: D =

D2

A1 / S2

> / A1 ∧ S2

where A = > and S = A1 ∧ S2.

A true By A = > and rule >I

A1 true and S2 true By ind.hyp. on D2

A1 ∧ S2 true By rule ∧I

S true Since S = A1 ∧ S2

LECTURE NOTES SEPTEMBER 7, 2006

Operational Semantics L4.7

Case: D =

D1

A1 / A2 ∧ S

A1 ∧ A2 / S
where A = A1 ∧ A2.

A1 true and A2 ∧ S true By ind.hyp. on D1

A2 true and S true By inversion (rule ∧I)
A1 ∧ A2 true By rule ∧I

Case: D =

D′

B1 ∧ · · · ∧ Bm / S

P / S
where A = P and

B1 true . . . Bm true

P true
.

B1 ∧ · · · ∧ Bm true and S true By ind.hyp. on D′

B1 true, . . . , Bm true By m − 1 inversion steps if m > 0 (∧I)
P true By given inference rule

If m = 0 then the rule for P has no premisses and we can conclude
P true without any inversion steps.

2

4.6 Completeness

The completeness theorem for the system with a subgoal stack states that
if A true then A / >. It is more difficult to see how to generalize this. The
following seems to work well.

Theorem 4.2 If A true and > / S then A / S.

Proof: By induction on the structure of the deduction of A true .

Case: D =
> true

>I where A = >.

> / S Assumption
A / S Since A = >

Case: D =

D1

A1 true

D2

A2 true

A1 ∧ A2 true
∧I where A = A1 ∧ A2.

LECTURE NOTES SEPTEMBER 7, 2006

L4.8 Operational Semantics

> / S Assumption
A2 / S By ind.hyp. on D2

> / A2 ∧ S By rule
A1 / A2 ∧ S By ind.hyp. on D1

A1 ∧ A2 / S By rule

Case: D =

D1

B1 true . . .

Dm

Bm true

P true
where A = P .

This is similar to the previous case, except we have to repeat the pat-
tern m − 1 times. One could formalize this as an auxiliary induction,
but we will not bother.

> / S Assumption
Bm / S By ind.hyp. on Dm

> / Bm ∧ S By rule
Bm−1 / Bm ∧ S By ind.hyp. on Dm−1

Bm−1 ∧ Bm / S By rule
> / (Bm−1 ∧ Bm) ∧ S By rule
B1 ∧ . . . ∧ Bm−1 ∧ Bm / S Repeating previous 3 steps

2

This form of completeness theorem is a non-deterministic completeness
theorem, since the choice which rule to apply in the case of an atomic goal
remains non-deterministic. Furthermore, the instantiation of the schematic
variables in the rules is “by magic”: we just assume for the purpose of
the semantics at this level, that all goals are ground and that the semantics
will pick the right instances. We will specify how these choices are to be
resolved in the next lecture.

4.7 Historical Notes

The idea of defining one language in another, similar one for the purpose
of definition goes back to the early days of functional programming. The
idea to transform such definitional interpreters so that advanced features
are not needed in the meta-language was formulated by Reynolds [3]. After
successive transformation we can arrive at an abstract machine. A very sys-
tematic account for the derivations of abstract machines in the functional

LECTURE NOTES SEPTEMBER 7, 2006

Operational Semantics L4.9

setting has been given by Danvy and several of his students (see, for exam-
ple, [1]). Meta-interpreters are also common in logic programming, mostly
with the goal to extend capabilities of the language. One of the earliest
published account is by Bowen and Kowalski [2].

4.8 Exercises

Exercise 4.1 Extend the meta-interpreter without goal stacks to a bounded inter-
preter which fails if no proof of a given depth can be found. In terms of proof trees,
the depth is length of the longest path from the final conclusion to an axiom.

Exercise 4.2 Extend the meta-interpreter without goal stacks with loop detection,
so that if while solving an atomic goal P the identical goal P arises again, that
branch of the search will be terminated with failure instead of diverging. You may
assume that all goals are ground.

Exercise 4.3 Extend the meta-interpreter with goal stacks so that if an atomic goal
succeeds once, we do not search for a proof of it again but just succeed. You may
assume that all goals are ground and you do not need to preserve the memo table
upon backtracking.

Exercise 4.4 Extend the meta-interpreter with the goal stack to trace the execution
of a program, printing information about the state of search.

4.9 References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
A functional correspondence between evluators and abstract machines.
In Proceedings of the 5th International Conference on Principles and Practice
of Declarative Programming (PPDP’03), pages 8–19, Uppsala, Sweden,
August 2003. ACM Press.

[2] Kenneth A. Bowen and Robert A. Kowalski. Amalgamating language
and metalanguage in logic programming. In K.L. Clark and S.-A.
Tärnlund, editors, Logic Programming, pages 153–172. Academic Press,
London, 1982.

[3] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM Annual Conference, pages
717–740, Boston, Massachusetts, August 1972. ACM Press. Reprinted
in Higher-Order and Symbolic Computation, 11(4), pp.363–397, 1998.

LECTURE NOTES SEPTEMBER 7, 2006

L4.10 Operational Semantics

LECTURE NOTES SEPTEMBER 7, 2006

15-819K: Logic Programming

Lecture 5

Backtracking

Frank Pfenning

September 12, 2006

In this lecture we refine the operational semantics further to explicit rep-
resent backtracking. We prove this formulation to be sound. From earlier
examples it should be clear that it can no longer be complete.

5.1 Disjunction and Falsehood

When our aim was to explicitly represent left-to-right subgoal selection,
we introduced conjunction and truth as our first logical connectives. This
allowed us to make the order explicit in the propositions we were interpret-
ing.

In this lecture we would like to make the choice of rule explicit. For this
purpose, it is convenient to introduce two new logical connectives: disjunc-
tion A ∨ B and falsehood ⊥. They are easily defined by their introduction
rules as usual.

A true

A ∨ B true
∨I1

B true

A ∨ B true
∨I2

No ⊥I rule

We can think of falsehood as a disjunction between zero alternatives; there-
fore, there are zero introduction rules.

5.2 Normal Forms for Programs

Sometimes it is expedient to give the semantics of programs assuming a
kind of normal form. The presentation from the previous lecture would
have been slightly simpler if we had presupposed an explicit conjunction
form for programs where each inference rule has exactly one premiss. The

LECTURE NOTES SEPTEMBER 12, 2006

L5.2 Backtracking

transformation to achieve this normal form in the presence of conjunction
and truth is simple: if the rule has multiple premisses, we just conjoin them
to form one premiss. If a rule has no premisses, we insert > as a premiss.
It is easy to prove that this transformation preserves meaning (see Exer-
cise 5.1).

In the semantics presented as the judgment A / S, every step of search
is deterministic, except for selection of the rule to apply, and how to in-
stantiate schematic rules. We will not address the latter choice in today’s
lecture: assume that all goals are ground, and consider for the moment only
programs so that ground goals have only ground subgoals.

A simple condition on the rules that avoids any choice when encounter-
ing atomic predicates is that every ground goal matches the head of exactly
one rule. Then, when we have a goal P the rule to apply is uniquely de-
termined. In order to achieve this, we have to transform our program into
explicit disjunction form. In a later lecture we will see a systematic way to
create this form as part of logic program compilation. For now we are con-
tent to leave this informal and just present programs in this form.

As an example, consider the usual member predicate.

member(X, [X|Y s])

member(X,Y s)

member(X, [Y |Y s])

There are two reasons that this predicate is not in explicit disjunction form.
The first is that there is no clause for member(t, []), violating the require-
ment that there be exactly one clause for each ground goal. The second
is that for goals member(t, [t|ys]), both clauses apply, again violating our
requirement.

We rewrite this in several steps. First, we eliminate the double occur-
rence of X in the first clause in favor of an explicit equality test, X

.
= Y .

X
.
= Y

member(X, [Y |Y s])

member(X,Y s)

member(X, [Y |Y s])

Now that the two rules have the same conclusion, we can combine them
into one, using disjunction.

X
.
= Y ∨ member(X,Y s)

member(X, [Y |Y s])

Finally, we add a clause for the missing case, with a premiss of falsehood.

⊥

member(X, [])

X
.
= Y ∨ member(X,Y s)

member(X, [Y |Y s])

LECTURE NOTES SEPTEMBER 12, 2006

Backtracking L5.3

This program is now in explicit disjunction form, under the presupposition
that the second argument to member is a list.

In Prolog, the notation for A ∨ B is A ; B and the notation for ⊥ is
fail, so the program above becomes

member(X, []) :- fail.

member(X, [Y | Ys]) :- X = Y ; member(X, Ys).

The Prolog convention is to always put whitespace around the disjunction
to distinguish it more clearly from conjunction.

5.3 Equality

Transforming a program into explicit disjunction form requires equality, as
we have seen in the member example. We write s

.
= t for the proposition

that s and t are equal, with the following introduction rule.

t
.
= t true

.
=I

We will also use s 6= t to denote that two terms are different as a kind of
judgment.

5.4 Explicit Backtracking

Assuming the program is in explicit disjunction form, the main choice con-
cerns how to prove A ∨ B as a goal. The operational semantics of Prolog
prescribes that we try to solve A first and only if that fails do we try B.
This suggest that in addition to the goal stack S, we add another argument
F to our search judgment which records further (untried) possibilities. We
refer to F as the failure continuation because it records what to do when the
current goal A fails. We write the new judgment as A / S / F and read this
as: Either A under S or F . More formally, we will establish soundness in the
form that if A / S / F then (A∧S)∨F true . This statement can also be our
guide in designing the rules for the judgment.

First, the rules for conjunction and truth. They do not change much,
just carry along the failure continuation.

A / B ∧ S / F

A ∧ B / S / F

B / S / F

> / (B ∧ S) / F > / > / F

LECTURE NOTES SEPTEMBER 12, 2006

L5.4 Backtracking

The rules for atomic predicates P are also simple, because we assume the
given rules for truth are in explicit disjunction form.

B / S / F

P / S / F for each rule

B true

P true

Next, the rule for disjunction. In analogy with conjunction and truth, it
is tempting to write the following two incorrect rules:

A / S / B ∨ F

A ∨ B / S / F
incorrect

B / S / F

⊥ / S / B ∨ F
incorrect

Let’s try to see the case in the soundness proof for the first rule. The sound-
ness proof proceeds by induction on the structure of the deduction for
A / S / F . For the first of the incorrect rules we would have to show
that if (A ∧ S) ∨ (B ∨ F) true then ((A ∨ B) ∧ S) ∨ F true . By inversion
on the rules for disjunction, we know that either A ∧ S true , or B true , or
F true . In the middle case (B true), we do not have enough information to
conclude that ((A ∨ B) ∧ S) ∨ F true and the proof fails (see Exercises 5.2
and 5.3).

The failure of the soundness proof also suggests the correct rule: we
have to pair up the alternative B with the goal stack S and restore S it
when we backtrack to consider B.

A / S / (B ∧ S) ∨ F

A ∨ B / S / F

B / S / F

⊥ / S′ / (B ∧ S) ∨ F

The goal stack S′ in the second rule is discarded, because it applies to the
goal ⊥ which cannot succeed. Instead we restore the goal stack S saved
with B.

It is worth noting explicitly that there is one case we did not cover

no rule for ⊥ / S / ⊥

so that our overall goal fails if the current goal fails and there are no further
alternatives.

Finally, we need two rules for equality, where we appeal to the equality
(s = t) and disequality (s 6= t) in our languages of judgments.

s = t > / S / F

s
.
= t / S / F

s 6= t ⊥ / S / F

s
.
= t / S / F

In a Prolog implementation this will not lead to difficulties because we as-
sume all goals are ground, so we can always tell if two terms are equal or
not.

LECTURE NOTES SEPTEMBER 12, 2006

Backtracking L5.5

5.5 Soundness

The soundness proof goes along familiar patterns.

Theorem 5.1 If A / S / F then (A ∧ S) ∨ F true .

Proof: By induction on the structure of D of A / S / F .

Case: D =

D1

A1 / A2 ∧ S / F

A1 ∧ A2 / S / F
where A = A1 ∧ A2.

(A1 ∧ (A2 ∧ S)) ∨ F true By ind.hyp. on D1

A1 ∧ (A2 ∧ S) true or F true By inversion

A1 ∧ (A2 ∧ S) true First subcase
A1 true and A2 true and S true By two inversions
(A1 ∧ A2) ∧ S true By two rule applications
((A1 ∧ A2) ∧ S) ∨ F true By rule (∨I1)

F true Second subcase
((A1 ∧ A2) ∧ S) ∨ F true By rule (∨I2)

Case: D =

D2

A2 / S1 / F

> / (A2 ∧ S1) / F
where A = > and S = A2 ∧ S1. Similar to the

previous case.

Case: D =
> / > / F

where A = S = >.

> true By rule (>I)
> ∧> true By rule (∧I)
(> ∧>) ∨ F true By rule ∨I1

Case: D =

D′

B / S / F

P / S / F
where A = P and

B true

P true
.

(B ∧ S) ∨ F true By ind.hyp. on D′

B true and S true First subcase, after inversion

LECTURE NOTES SEPTEMBER 12, 2006

L5.6 Backtracking

P true By rule
(P ∧ S) ∨ F By rules (∧I and ∨I1)

F true Second subcase, after inversion
(P ∧ S) ∨ F By rule (∨I2)

Case: D =

D1

A1 / S / (A2 ∧ S) ∨ F

A1 ∨ A2 / S / F
where A = A1 ∨ A2.

(A1 ∧ S) ∨ ((A2 ∧ S) ∨ F) true By ind.hyp. on D1

A1 true and S true First subcase, after inversion
A1 ∨ A2 true By rule (∨I1)
((A1 ∨ A2) ∧ S) ∨ F true By rules (∧I and ∨I1)

A2 true and S true Second subcase, after inversion
A1 ∨ A2 true By rule (∨I2)
((A1 ∨ A2) ∧ S) ∨ F true By rules (∧I and ∨I1)

F true Third subcase, after inversion
((A1 ∨ A2) ∧ S) ∨ F true By rule (∨I2)

Case: D =

D2

A2 / S1 / F0

⊥ / S / (A2 ∧ S1) ∨ F0

where A = ⊥ and F = (A2 ∧ S1) ∨ F0.

(A2 ∧ S1) ∨ F0 true By ind.hyp. on D2

(⊥ ∧ S) ∨ ((A2 ∧ S1) ∨ F0) true By rule (∨I2)

Cases: The cases for equality are left to the reader (see Exercise 5.4).

2

5.6 Completeness

Of course, the given set of rules is not complete. For example, the single
rule

diverge ∨ >

diverge

LECTURE NOTES SEPTEMBER 12, 2006

Backtracking L5.7

cannot be found by search, that is, there is no proof of

diverge / > / ⊥

even though there is a simple proof that diverge true .

> true
>I

diverge ∨ > true
∨I2

diverge true

However, it is interesting to consider that the set of rules is complete a
weaker sense, namely that if A / > / ⊥ can be reduced to ⊥ / S / ⊥ then
there can be no proof of A true . We will not do this here (see Exercise 5.5).
One way to approach this formally is to add another argument and use a
four-place judgment

A / S / F / J

where J is either istrue (if a proof can be found) or isfalse (if the the attempt
to find a proof fails finitely).

5.7 A Meta-Interpreter with Explicit Backtracking

Based on the idea at the end of the last section, we can turn the inference
system into a Prolog program that can tell us explicitly whenever search
succeeds or fails finitely.

Recall the important assumption that all goals are ground, and that the
program is in explicit disjunction form.

solve(true, true, _, istrue).

solve(true, (A , S), F, J) :- solve(A, S, F, J).

solve((A , B), S, F, J) :- solve(A, (B, S), F, J).

solve(fail, _, fail, isfalse).

solve(fail, _, ((B , S) ; F), J) :- solve(B, S, F, J).

solve((A ; B), S, F, J) :- solve(A, S, ((B , S) ; F), J).

solve((X = Y), S, F, J) :- X = Y, solve(true, S, F, J).

solve((X = Y), S, F, J) :- X \= Y, solve(fail, S, F, J).

solve(P, S, F, J) :- clause(P, B), solve(B, S, F, J).

% top level interface

solve(A, J) :- solve(A, true, fail, J).

LECTURE NOTES SEPTEMBER 12, 2006

L5.8 Backtracking

Given a program in explicit disjunction form, such as

member(X, []) :- fail.

member(X, [Y|Ys]) :- X = Y ; member(X, Ys).

we can now ask

?- solve(member(1, [2,3,4]), J).

J = isfalse;

?- solve(member(1, [1,2,1,4]), J).

J = istrue;

Each query will succeed only once since our meta-interpreter only searches
for the first solution (see Exercise 5.6).

5.8 Abstract Machines

The meta-interpreter in which both subgoal selection and backtracking are
explicit comes close to the specification of an abstract machine. In order
to see how the inference rule can be seen as transition rules, we consider
A / S / F as the state of the machine. Each rule for this judgment has only
one premiss, so each rule, when read from the conclusion to the premiss
can be seen as a transition rule for an abstract machine.

Examining the rules we can see that for every state there is a unique
state transition, with the following exceptions:

1. A state > / > / F is final since there is no premiss for the maching
rule. The computation finishes.

2. A state ⊥ / S / ⊥ is final since there is no rule that applies. The
computation fails.

3. A state P / S / F applies a unique transition (by the requirement that
there be a unique rule for every atomic goal P), although how to find
that rule instance remains informal.

In the next lecture we make the process of rule application more precise,
and we also admit goals with free variables as in Prolog.

LECTURE NOTES SEPTEMBER 12, 2006

Backtracking L5.9

5.9 Historical Notes

The explicit disjunction form is a pre-cursor of Clark’s iff-completion of a
program [2]. This idea is quite general, is useful in compilation of logic
programs, and can be applied to much richer logic programming languages
than Horn logic [1].

Early logic programming theory generally did not make backtracking
explicit. Some references will appear in the next lecture, since some of the
intrinsic interest arises from the notion of substitution and unification.

5.10 Exercises

Exercise 5.1 Prove that if we replace every rule

B1 true . . . Bm true

P true

by
B1 ∧ · · · ∧ Bm true

P true

to achieve the explicit conjunction form, the original and revised specification
are strongly equivalent in the sense that there is a bijection between the proofs
in the two formulations for each atomic proposition. Read the empty conjunction
(m = 0) as >.

Exercise 5.2 Give a counterexample to show that the failure in the soundness
proof for the first incorrect disjunction rule is not just a failure in the proof: the
system is actually unsound with respect to logical truth.

Exercise 5.3 Investigate if the second incorrect rule for disjunction

B / S / F

⊥ / S / B ∨ F
incorrect

also leads to a failure in the soundness proof. If so, give a counterexample. If not,
discuss in what sense this rule is nonetheless incorrect.

Exercise 5.4 Complete the soundness proof by giving the cases for equality.

Exercise 5.5 Investigate weaker notions of completeness for the backtracking se-
mantics, as mentioned at the end of the section of completeness.

LECTURE NOTES SEPTEMBER 12, 2006

L5.10 Backtracking

Exercise 5.6 Rewrite the meta-interpreter so it counts the number of proofs of a
goal instead of returning just an indication of whether it is true or false. You may
make all the same assumptions that solve(A, S, F, J) makes.

Exercise 5.7 Revisit the example from Lecture 3

digit(s(s(s(s(s(s(s(s(s(z))))))))))

digit(s(N))

digit(N)

and prove more formally now that any query ?- digit(n) for n > 9 will not
terminate. You should begin by rewriting the program into explicit disjunction
form. Please be clear what you are doing the induction over (if you use induction),
and explain in which way your theorem captures the statement above.

Exercise 5.8 If we were not concerned about space usage or efficiency, we could
write a breadth-first interpreter instead of backtracking. Specify such an inter-
preter using the judgmental style and prove that it is sound and complete with
respect to logical truth. Translate your interpreter into a Prolog program.

5.11 References

[1] Iliano Cervesato. Proof-theoretic foundation of compilation in logic
programming languages. In J. Jaffar, editor, Proceedings of the Joint In-
ternational Conference and Symposium on Logic Programming (JICSLP’98),
pages 115–129, Manchester, England, June 1998. MIT Press.

[2] Keith L. Clark. Negation as failure. In H. Gallaire and J. Minker, edi-
tors, Logic and Databases, pages 293–322. Plenum Press, New York, 1978.

LECTURE NOTES SEPTEMBER 12, 2006

15-819K: Logic Programming

Lecture 6

Unification

Frank Pfenning

September 14, 2006

In this lecture we take the essential step towards making the choice of goal
and rule instantiation explicit in the operational semantics. This consists of
describing an algorithm for a problem called unification which, given two
terms t and s, tries to find a substitution θ for its free variables such that
tθ = sθ if such a substitution exists. Recall that we write tθ for the result of
applying the substitution θ to the term t.

6.1 Using Unification in Proof Search

Before we get to specifics of the algorithm, we consider how we use uni-
fication in proof search. Let us reconsider the (by now tired) example of
unary addition

plus(z, N,N)
pz

plus(M,N,P)

plus(s(M),N, s(P))
ps

and an atomic goal such as

plus(s(z), s(s(z)), P).

Clearly the conclusion of the first rule does not match this goal, but the
second one does. What question do we answer to arrive at this statement?

The first attempt might be: “There is an instance of the rule such that the
conclusion matches the goal.” When we say instance we mean here the result
of substituting terms for the variables occuring in a rule, proposition, or
term. We can see that this specification is not quite right: we need to in-
stantiate the goal as well, since P must have the form s(P1) for some as yet

LECTURE NOTES SEPTEMBER 14, 2006

L6.2 Unification

unknown P1. The subgoal in that case would be plus(z, s(s(z)), P1) accord-
ing to the rule instantiation with z for M , s(s(z)) for N , and P1 for P .

The second attempt would therefore be: “There is an instance of the rule
and an instance of the goal such that the two are equal.” This does not quite
capture what we need either. For example, substituting s(s(s(s(z)))) for P

in the goal and s(s(s(z))) for P in the rule, together with the substitution for
M and N from above, will also make the goal and conclusion of the rule
identical, but is nonetheless wrong. The problem is that it would overcom-
mit: using P1 for P in the rule, on the other hand, keeps the options open.
P1 will be determined later by search and other unifications. In order to
express this, we define that t1 is more general than t2 if t1 can be instantiated
to t2.

The third attempt is therefore: “Find the most general instance of the rule
and the goal so that the conclusion of the rule is equal to the instantiated goal.”
Phrased in terms of substitutions, this says: find θ1 and θ2 such that P ′θ1 =
Pθ2, and any other common instance of P ′ and P is an instance of P ′θ1.

In terms of the algorithm description it is more convenient if we rede-
fine the problem slightly in this way: “First rename the variables in the rule
so that they are disjoint from the variables in the goal. Then find a single most
general substitution θ that unifies the renamed conclusion with the goal.” Here, a
unifying substitution θ is most general if any other unifying substitution is
an instance of θ.

In the remainder of the lecture we will make these notions more precise
and present an algorithm to compute a most general unifier. In the next
lecture we show how to reformulate the operational semantics to explicitly
use most general unifiers. This means that for the first time the semantics
will admit free variables in goals.

6.2 Substitutions

We begin with a specification of substitutions. We use the notation FV(t)
for the set of all free variables in a term.

Substitutions θ ::= t1/x1, . . . , tn/xn

We postulate that all xi are distinct. The order of the pairs in the substi-
tution is irrelevant, and we consider permutations of substitutions to be
equal. We denote the domain of θ by dom(θ) = {x1, . . . , xn}. Similarly, we
call the set of all variables occurring in the substitution term ti the codomain
and write cod(θ) =

⋃
i
FV(ti).

LECTURE NOTES SEPTEMBER 14, 2006

Unification L6.3

An important general assumption is that the domain and codomain of
substitutions are disjoint.

Assumption: All substitutions we consider are valid, that is,
dom(θ) ∩ cod(θ) = ∅ for any substitution θ.

This is by no means the only way to proceed. A more common assumption
is that all substitutions are idempotent, but we believe the above is slightly
more convenient for our limited purposes.

Note that valid substitutions cannot contain pairs x/x, since it would
violate our assumption above. However, such pairs are not needed, since
their action is the identity, which can also be achieve by simply omitting
them.

Applying a substitution θ to a term t is easily defined compositionally.

xθ = t if t/x in θ

yθ = y if y /∈ dom(θ)
f(t1, . . . , tn)θ = f(t1θ, . . . , tnθ)

6.3 Composing Substitutions

In the course of search for a deduction, and even in the course of solv-
ing one unification problem, we obtain information in a piecemeal fash-
ion. This means we construct a (partial) substitution, apply it, and then
construct another substitution on the result. The overall answer is then
the composition of these two substitution. We write it as τθ. The guiding
property we need is that for any t, we have (tτ)θ = t(τθ). In order for
this property to hold and maintain our general assumptions on substitu-
tions, we specify the precondition that dom(τ) ∩ dom(θ) = ∅ and also that
dom(τ) ∩ cod(θ) = ∅. We define the composition by going through the
substitution left-to-right, until encountering the empty substitution (·).

(t/x, τ)θ = tθ/x, τθ

(·)θ = θ

First, note that dom(τθ) = dom(τ) ∪ dom(θ) which is a union of disjoint
domains. Second, cod(τθ) = (cod(τ) − dom(θ)) ∪ cod(θ) so that cod(τθ) ∩
dom(τθ) = ∅ as can be seen by calculation. In other words, τθ is a valid
substitution.

It is easy to verify that the desired property of composition actually
holds. We will also need a corresponding property stating that composition
of substitution is associative, under suitable assumptions.

LECTURE NOTES SEPTEMBER 14, 2006

L6.4 Unification

Theorem 6.1 (Substitution Composition) Assume we are given a term t and
valid substitutions σ and θ with dom(σ)∩dom(θ) = ∅ and dom(σ)∩cod(θ) = ∅.
Then σθ is valid and

(tσ)θ = t(σθ)

Furthermore, if τ is a substitution such that dom(τ) ∩ dom(σ) = dom(τ) ∩

dom(θ) = ∅ then also

(τσ)θ = τ(σθ)

Proof: The validity of σθ has already been observed above. The first equal-
ity follows by induction on the structure of the term t, the second by induc-
tion on the structure of τ (see Exercise 6.1).

Case: t = x for a variable x. Then we distinguish two subcases.

Subcase: x ∈ dom(σ) where s/x ∈ σ.

(xσ)θ = sθ By defn. of xσ

= x(σθ) Since sθ/x ∈ σθ

Subcase: x /∈ dom(σ).

(xσ)θ = xθ By defn. of xσ

= x(σθ) By defn. of σθ

Case: t = f(t1, . . . , tn) for terms t1, . . . , tn.

(tσ)θ = f(t1σ, . . . , tnσ)θ By defn. of tσ

= f((t1σ)θ, . . . , (tnσ)θ) By defn. of f()θ
= f(t1(σθ), . . . , tn(σθ)) By i.h., n times
= f(t1, . . . tn)(σθ) = t(σθ) By defn. of t(σθ)

2

6.4 Unification

We say θ is a unifier of t and s if tθ = sθ. We say that θ is a most general
unifier for t and s if it is a unifier, and for any other unifier σ there exists
a substitution σ′ such that σ = θσ′. In other words, a unifier is most gen-
eral if any other unifier is an instance of it, where “instance” refers to the
composition of substitutions.

As usual in this class, we present the algorithm to compute a most gen-
eral unifier as a judgment, via a set of inference rules. The judgment has

LECTURE NOTES SEPTEMBER 14, 2006

Unification L6.5

the form t
.
= s | θ, where we think of t and s as inputs and a most gen-

eral unifier θ as the output. In order to avoid the n-ary nature of the list of
arguments, we will have an auxiliary judgment t

.
= s | θ for sequences of

terms t and s. Notions such as application of substitution are extended to
sequences of terms in the obvious way. We use (·) to stand for an empty
sequence of terms (as well as the empty substitution, which is a sequence
of term and variable pairs). In general, we will use boldface letters to stand
for sequences of terms.

We first consider function terms and term sequences.

t
.
= s | θ

f(t)
.
= f(s) | θ (·)

.
= (·) | (·)

t
.
= s | θ1 tθ1

.
= sθ1 | θ2

(t, t)
.
= (s, s) | θ1θ2

Second, the cases for variables.

x
.
= x | (·)

x /∈ FV(t)

x
.
= t | (t/x)

t = f(t), x /∈ FV(t)

t
.
= x | (t/x)

The condition that t = f(t) in the last rule ensures that it does not overlap
with the rule for x

.
= t. The condition that x /∈ FV(t) is necessary because,

for example, the two terms x and f(x) do not have unifier: no matter what,
the substitution f(x)θ will always have one more occurrence of f than xθ

and hence the two cannot be equal.
The other situations where unification fails is an equation of the form

f(t) = g(s) for f 6= g, and two sequences of terms of unequal length. The
latter can happen if function symbols are overloaded at different arities, in
which case failure of unification is the correct result.

6.5 Soundness

There are a number of properties we would like to investigate regarding
the unification algorithm proposed in the previous section. The first is its
soundness, that is, we would like to show that the substitution θ is indeed
a unifier.

Theorem 6.2 If t
.
= s | θ then tθ = sθ.

Proof: We need to generalize this to cover the auxiliary unification judg-
ment on term sequences.

(i) If t
.
= s | θ then tθ = sθ.

LECTURE NOTES SEPTEMBER 14, 2006

L6.6 Unification

(ii) If t
.
= s | θ then tθ = sθ.

The proof proceeds by mutual induction on the structure of the deduction
D of t

.
= s and E of t

.
= s. This means that if one judgment appears as in

the premiss of a rule for the other, we can apply the appropriate induction
hypothesis.

In the proof below we will occasionally refer to equality reasoning, which
refers to properties of equality in our mathematical language of discourse,
not properties of the judgment t

.
= s. There are also some straightforward

lemmas we do not bother to prove formally, such as t(s/x) = t if x /∈ FV(t).

Case: D =

E
t

.
= s | θ

f(t)
.
= f(s) | θ

where t = f(t) and s = f(s).

tθ = sθ By i.h.(ii) on E

f(t)θ = f(s)θ By definition of substitution

Case: D =
(·)

.
= (·) | (·)

where t = s = (·) and θ = (·).

(·)θ = (·)θ By equality reasoning

Case: E =

D1

t1
.
= s1 | θ1

E2

t2θ1

.
= s2θ1 | θ2

(t1, t2)
.
= (s1, s2) | θ1θ2

where t = (t1, t2) and s = (s1, s2)

and θ = θ1θ2.

t1θ1 = s1θ1 By i.h.(i) on D1

(t1θ1)θ2 = (s1θ1)θ2 By equality reasoning
t1(θ1θ2) = s1(θ2θ2) By substitution composition (Theorem 6.1)
(t2θ1)θ2 = (s2θ1)θ2 By i.h.(ii) on E2

t2(θ1θ2) = s2(θ1θ2) By substitution composition
(t1, t2)(θ1θ2) = (s1, s2)(θ1θ2) By defn. of substitution

Case: D =
x

.
= x | (·)

where t = s = x and θ = (·).

x(·) = x(·) By equality reasoning

LECTURE NOTES SEPTEMBER 14, 2006

Unification L6.7

Case: D =
x /∈ FV(s)

x
.
= s | (s/x)

where t = x and θ = (s/x).

x(s/x) = s By defn. of substitution
= s(s/x) Since x /∈ FV(s)

Case: D =
t = f(t), x /∈ FV(t)

t
.
= x | (t/x)

where s = x and θ = (t/x).

t(t/x) = t Since x /∈ FV(t)
= x(t/x) By defn. of substitution

2

6.6 Completeness

Completness of the algorithm states that if s and t have a unifer then there
exists a most general one according to the algorithm. We then also need
to observe that the unification judgment is deterministic to see that, if in-
terpreted as an algorithm, it will always find a most general unifier if one
exists.

Theorem 6.3 If tσ = sσ then t
.
= s | θ and σ = θσ′ for some θ and σ′.

Proof: As in the soundness proof, we generalize to address sequences.

(i) If tσ = sσ then t
.
= s | θ and σ = θσ′.

(ii) If tσ = sσ then t
.
= s | θ and σ = θσ′.

The proof proceeds by mutual induction on the structure of tσ and tσ. We
proceed by distinguishing cases for t and s, as well as t and s. This structure
of argument is a bit unusual: mostly, we distinguish cases of the subject of
our induction, be it a deduction or a syntactic object. In the situation here
it is easy to make a mistake and incorrectly attempt to apply the induction
hypothesis, so you should carefully examine all appeals to the induction
hypothesis below to make sure you understand why they are correct.

Case: t = f(t). In this case we distinguish subcases for s.

Subcase: s = f(s).

LECTURE NOTES SEPTEMBER 14, 2006

L6.8 Unification

f(t)σ = f(s)σ Assumption
tσ = sσ By defn. of substitution
t

.
= s | θ and σ = θσ′ for some θ and σ′ By i.h.(ii) on tσ

f(t)
.
= f(s) | θ By rule

Subcase: s = g(s) for f 6= g. This subcase is impossible:

f(t)σ = g(s)σ Assumption
Contradiction By defn. of substitution

Subcase: s = x.

f(t)σ = xσ Assumption
σ = (f(t)σ/x, σ′) for some σ′ By defn. of subst. and reordering
x /∈ FV(f(t)) Otherwise f(t)σ 6= xσ

f(t) = x | (f(t)/x) so we let θ = (f(t)/x) By rule
σ = (f(t)σ/x, σ′) See above
= (f(t)σ′/x, σ′) Since x /∈ FV(f(t))
= (f(t)/x)σ′ By defn. of substitution
= θσ′ Since θ = (f(t)/x)

Case: t = x. In this case we also distinguish subcases for s and proceed
symmetrically to the above.

Case: t = (·). In this case we distinguish cases for s.

Subcase: s = (·).

(·)
.
= (·) | (·) By rule

σ = (·)σ By defn. of substitution

Subcase: s = (s1, s2). This case is impossible:

(·)σ = (s1, s2)σ Assumption
Contradiction By definition of substitution

Case: t = (t1, t2). Again, we distinguish two subcases.

Subcase: s = (·). This case is impossible, like the symmetric case
above.

Subcase: s = (s1, s2).

(t1, t2)σ = (s1, s2)σ Assumption
t1σ = s1σ and
t2σ = s2σ By defn. of substitution

LECTURE NOTES SEPTEMBER 14, 2006

Unification L6.9

t1
.
= s1 | θ1 and

σ = θ1σ
′

1
for some θ1 and σ′

1
By i.h.(i) on t1σ

t2(θ1σ
′

1
) = s2(θ1σ

′

1
) By equality reasoning

(t2θ1)σ
′

1
= (s2θ1)σ

′

1
By subst. composition (Theorem 6.1)

t2θ1

.
= s2θ1 | θ2 and

σ′

1
= θ2σ

′

2
for some θ2 and σ′

2
By i.h.(ii) on t2σ (= (t2θ1)σ

′

1
)

(t1, t2)
.
= (s1, s2) | θ1θ2 By rule

σ = θ1σ
′

1
= θ1(θ2σ

′

2
) By equality reasoning

= (θ1θ2)σ
′

2
By subsitution composition (Theorem 6.1)

2

It is worth observing that a proof by mutual induction on the structure
of t and t would fail here (see Exercise 6.2).

An alternative way we can state the first induction hypothesis is:

For all r, s, t, and σ such that r = tσ = sσ, there exists a θ and a
σ′ such that t

.
= s | θ and σ = θσ′.

The the proof is by induction on the structure of r, although the case we
distinguish still concern the structure of s and t.

6.7 Termination

From the completeness argument in the previous section we can see that if
given t and s the deduction of t

.
= s | θ is bounded by the structure of the

common instance r = tθ = sθ. Since the rules furthermore have no non-
determinism and the occurs-checks in the variable/term and term/variable
cases also just traverse subterms of r, it means a unifier (if it exists) can be
found in time proportional to the size of r.

Unfortunately, this means that this unification algorithm is exponential
in the size of t and s. For example, the only unifier for

g(x0, x1, x2, . . . , xn)
.
= g(f(x1, x1), f(x2, x2), f(x3, x3), . . . a)

has 2n occurrences of a.

Nevertheless, it is this exponential algorithm with a small, but signif-
icant modification that is used in Prolog implementations. This modifica-
tion (which make Prolog unsound from the logical perspective!) is to omit
the check x /∈ FV(t) in the variable/term and term/variable cases and con-
struct a circular term. This means that the variable/term case in unification

LECTURE NOTES SEPTEMBER 14, 2006

L6.10 Unification

is constant time, because in an implementation we just change a pointer as-
sociated with the variable to point to the term. This is of crucial importance,
since unification in Prolog models parameter-passing from other languages
(thinking of the predicate as a procedure), and it is not acceptable to take
time proportional to the size of the argument to invoke a procedure.

This observation notwithstanding, the worst-case complexity of the al-
gorithm in Prolog is still exponential in the size of the input terms, but it
is linear in the size of the result of unification. The latter fact appears to be
what rescues this algorithm in practice, together with its straightforward
behavior which is important for Prolog programmers.

All of this does not tell us what happens if we pass terms to our unifi-
cation algorithm that do not have a unifier. It is not even obvious that the
given rules terminate in that case (see Exercise 6.3). Fortunately, in practice
most non-unifiable terms result in a clash between function symbols rather
quickly.

6.8 Historical Notes

Unification was originally developed by Robinson [7] together with resolu-
tion as a proof search principle. Both of these critically influenced the early
designs of Prolog, the first logic programming language. Similar computa-
tions were described before, but not studied in their own right (see [1] for
more on the history of unification).

It is possible to improve the complexity of unification to linear in the
size of the input terms if a different representation for the terms and sub-
stitutions is chosen, such as a set of multi-equations [4, 5] or dag structures
with parent pointers [6]. These and similar algorithms are important in
some applications [3], although in logic programming and general theorem
proving, minor variants of Robinson’s original algorithm are prevalent.

Most modern versions of Prolog support sound unification, either as
a separate predicate unify_with_occurs_check/2 or even as an optional
part of the basic execution mechanism1. Given advanced compilation tech-
nology, I have been quoted figures of 10% to 15% overhead for using sound
unification, but I have not found a definitive study confirming this. We will
return to the necessary optimization in a later lecture.

Another way out is to declare that the bug is a feature, and Prolog is re-
ally a constraint programming language over rational trees, which requires
a small modification of the unification algorithm to ensure termination in

1for example, in Amzi!Prolog

LECTURE NOTES SEPTEMBER 14, 2006

Unification L6.11

the presence of circular terms [2] but still avoids the occurs-check. The price
to be paid is that the connection to the predicate calculus is lost, and that
popular reasoning techniques such as induction are much more difficult to
apply in the presence of infinite terms.

6.9 Exercises

Exercise 6.1 Prove τ(σθ) = (τσ)θ under the conditions stated in Theorem 6.1.

Exercise 6.2 Show precisely where and why the attempt to prove completeness of
the rules for unification by mutual induction over the structure of t and t (instead
of tσ and tσ) would fail.

Exercise 6.3 Show that the rules for unification terminate no matter whether
given unifiable or non-unifiable terms t and s. Together with soundness, com-
pleteness, and determinacy of the rules this means that they constitute a decision
procedure for finding a most general unifier if it exists.

6.10 References

[1] Franz Baader and Wayne Snyder. Unification theory. In J.A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume 1,
chapter 8, pages 447–532. Elsevier and MIT Press, 2001.

[2] Joxan Jaffar. Efficient unification over infinite terms. New Generation
Computing, 2(3):207–219, 1984.

[3] Kevin Knight. Unification: A multi-disciplinary survey. ACM Comput-
ing Surveys, 2(1):93–124, March 1989.

[4] Alberto Martelli and Ugo Montanari. Unification in linear time and
space: A structured presentation. Internal Report B76-16, Istituto di
Elaborazione delle Informazione, Consiglio Nazionale delle Ricerche,
Pisa, Italy, July 1976.

[5] Alberto Martelli and Ugo Montanari. An efficient unification al-
gorithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[6] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Com-
puter and System Sciences, 16(2):158–167, April 1978.

[7] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, January 1965.

LECTURE NOTES SEPTEMBER 14, 2006

L6.12 Unification

LECTURE NOTES SEPTEMBER 14, 2006

15-819K: Logic Programming

Lecture 7

Lifting

Frank Pfenning

September 19, 2006

Lifting is the name for turning a search calculus with ground judgments
into one employing free variables. Unification might be viewed as the
result of lifting a ground equality judgment, but we never explicitly in-
troduced such a judgment. In this lecture our goal is to lift previously
given operational semantics judgments for logic programming to permit
free variables and prove their soundness and completeness. Unification
and the judgment to compute most general unifiers are the central tools.

7.1 Explicating Rule Application

When explicating the left-to-right subgoal selection order in the operational
semantics, we needed to introduce conjunction and truth in order to expose
these choices explicitly. When explicating the first-to-last strategy of clause
selection and backtracking we need to introduce disjunction and falsehood.
It should therefore come as no surprise that in order to explicit the details of
rule application and unification we need some further logical connectives.
These include at least universal quantification and implication. However,
we will for the moment postpone their formal treatment in order to con-
centrate on the integration of unification from the previous lecture into the
operational semantics.

An inference rule
B true

P true

is modeled logically as the proposition

∀x1 . . . ∀xn. B ⊃ P

LECTURE NOTES SEPTEMBER 19, 2006

L7.2 Lifting

where {x1, . . . , xn} is the set of free variables in the rule. A logic program is
a collection of such propositions. According to the meaning of the universal
quantifier, we can use such a proposition by instantiating the universally
quantified variables with arbitrary terms. If we denote this substitution
by τ with dom(τ) = {x1, . . . , xn} and cod(τ) = ∅, then instantiating the
quantifiers yields Bτ ⊃ Pτ true . We can use this implication to conclude
Pτ true if we have a proof of Bτ true . Require the co-domain of τ to be
empty means that the substitution is ground: there are no variables in its
substitution terms. This is to correctly represent the convention that an
inference rule stands for all of its ground instances.

In order to match Prolog syntax more closely, we often write P ← B for
B ⊃ P . Moreover, we abbreviate a whole sequence of quantifiers as ∀x. A,
use x for a set of variables.

Previously, for every rule

B true

P true

we add a rule
B / S

P / S

to the operational semantics judgment A / S.

Now we want to replace all these rules by a single rule. This means
we have to make the program explicit as a collection Γ of propositions,
representing the rules as propositions. We always assume that all members
of Γ are closed, that is, FV(A) = ∅ for all A ∈ Γ. We write this judgment as

Γ ` A / S

which means that A under stack S follows from program Γ. Rule applica-
tion then has the form

∀x. P ′ ← B′ ∈ Γ

dom(τ) = x

cod(τ) = ∅
P ′τ = P Γ ` B′τ / S

Γ ` P / S

All the other rules just carry the program Γ along, since it remains fixed.
We will therefore suppress it when writing the judgment.

LECTURE NOTES SEPTEMBER 19, 2006

Lifting L7.3

7.2 Free Variable Deduction

We use the calculus with an explicit goal stack as the starting point. We
recall the rules, omitting Γ ` as promised.

A / B ∧ S

A ∧B / S

B / S

> / B ∧ S > / >

∀x. P ′ ← B′ ∈ Γ

dom(τ) = x

cod(τ) = ∅
P ′τ = P B′τ / S

P / S

In the free variable form we return a substitution θ, which is reminiscent
of our formulation of unification. The rough idea, formalized in the next
section, is that if A / S | θ then Aθ / Sθ. The first three rules are easily
transformed.

A / B ∧ S | θ

A ∧B / S | θ

B / S | θ

> / B ∧ S | θ > / > | (·)

The rule for atomic goals requires a bit of thought. In order to avoid a
conflict between the names of the variables in the rule, and the names of
variables in the goal, we apply a so-called renaming substitution. A renam-
ing substitution ρ has the form y1/x1, . . . , yn/xn where all the xi and yi are
distinct. We will always use ρ to denote renaming substitutions. In Prolog
terminology we say that we copy the clause, instantiating its variables with
fresh variables.

∀x. P ′ ← B′ ∈ Γ

dom(ρ) = x

cod(ρ) ∩ FV(P/S) = ∅
P ′ρ

.
= P | θ1 B′ρθ1 / Sθ1 | θ2

P / S | θ1θ2

7.3 Soundness

The soundness of the lifted calculus is a relatively straightforward prop-
erty. We would like to say that if P / S | θ then Pθ / Sθ. However, the
co-domain of θ may contain free variables, so the latter may not be well
defined. We therefore have to admit an arbitrary grounding substitution σ′

to be composed with θ. In the proof, we also need to extend σ′ to account

LECTURE NOTES SEPTEMBER 19, 2006

L7.4 Lifting

for additional variables. We write σ′′ ⊆ σ′ for an extension of σ′ with some
additional pairs t/x for ground terms t.

Theorem 7.1 If A / S | θ then for any substitution σ′ with FV((A/S)θσ′) = ∅
we have Aθσ′ / Sθσ′.

Proof: By induction on the structure of D of P / S | θ.

Cases: The first three rule for conjunction and truth are straightforward
and omitted here.

Case: D =
∀x. P ′ ← B′ ∈ Γ

dom(ρ) = x

cod(ρ) ∩ FV(P/S) = ∅
P ′ρ

.
= P | θ1

D′

B′ρθ1 / Sθ1 | θ2

P / S | θ1θ2

where A = P and θ = θ1θ2.

FV(P (θ1θ2)σ
′) = FV(S(θ1θ2)σ

′) = ∅ Assumption
Choose σ′′ ⊇ σ′ such that FV((B′ρθ1)θ2σ

′′) = ∅
(B′ρθ1)θ2σ

′′ / (Sθ1)θ2σ
′′ By i.h. on D′

B′(ρθ1θ2σ
′′) / Sθ1θ2σ

′′ By assoc. of composition
P ′ρθ1 = Pθ1 By soundness of unification
P ′ρθ1θ2σ

′′ = Pθ1θ2σ
′′ By equality reasoning

P ′(ρθ1θ2σ
′′) = Pθ1θ2σ

′′ By assoc. of composition
Pθ1θ2σ

′′ / Sθ1θ2σ
′′ By rule (using τ = ρθ1θ2σ

′′)
P (θ1θ2)σ

′′ / S(θ1θ2)σ
′′ By assoc. of composition

P (θ1θ2)σ
′ / S(θ1θ2)σ

′ Since σ′ ⊆ σ′′ and
FV(P (θ1θ2)σ

′) = FV(S(θ1θ2)σ
′) = ∅

2

The fact that we allow an arbitrary grounding substitution in the state-
ment of the soundness theorem is not just technical device. It means that if
there are free variables left in the answer substitution θ, then any instance of
θ is also a valid answer. For example, if we ask append([1,2,3], Ys, Zs)

and obtain the answer Zs = [1,2,3|Ys] then just by substituting [4,5] for
Ys we can conclude append([1,2,3], [4,5], [1,2,3,4,5]) without any
further search.

Unfortunately, in the presence of free variables built-in extra-logical
Prolog predicates such as disequality, negation-as-failure, or cut destroy
this property (in addition to other problems with soundness).

LECTURE NOTES SEPTEMBER 19, 2006

Lifting L7.5

7.4 Completeness

Completness follows the blueprint in the completeness proof for unifica-
tion. In the literature this is often called the lifting lemma, showing that if
there is ground deduction of a judgment, there must be a more general free
variable deduction.

The first try at a lifting lemma, in analogy with a similar completness
property for unification, might be:

If Aσ / Sσ then A / S | θ and σ = θσ′ for some θ and σ′.

This does not quite work for a technical reason: during proof search addi-
tional variables are introduced which could appear in the domain of θ (and
therefore in the domain of θσ′), while σ does not provide a substitution
term for them.

We can overcome this inaccuracy by just postulating that additional
term/variable pairs can be dropped, written as σ ⊆ θσ′. In the theorem
and proof below we always assume that substitutions τ and σ, possibly
subscripted or primed, are ground substitutions, that is, their co-domain is
empty.

Theorem 7.2 If Aσ / Sσ for ground Aσ, Sσ, and σ, then A / S | θ and σ ⊆ θσ′

for some θ and ground σ′.

Proof: The proof is by induction on the structure of the given deduction of
Aσ / Sσ.

Cases: The cases for the three rule for conjunction and truth are straight-
forward and omitted here.

Case: D =
∀x. P ′ ← B′ ∈ Γ

dom(τ) = x

cod(τ) = ∅
P ′τ = Pσ

D′

B′τ / Sσ

Pσ / Sσ
where Aσ = Pσ.

τ = ρτ ′ for some renaming ρ and substitution τ ′

with dom(ρ) = x, cod(ρ) = dom(τ ′), and
dom(τ ′) ∩ dom(σ) = ∅ Choosing fresh vars.
(τ ′, σ) a valid substitution By disjoint domains
(P ′ρ)τ ′ = (P ′ρ)(τ ′, σ) dom(σ) ∩ FV(P ′ρ) = ∅
Sσ = S(τ ′, σ) dom(τ ′) ∩ FV(S) = ∅
Pσ = P (τ ′, σ) dom(τ ′) ∩ FV(P) = ∅

LECTURE NOTES SEPTEMBER 19, 2006

L7.6 Lifting

P ′τ = Pσ Given premiss
P ′ρ(τ ′, σ) = P (τ ′, σ) By equality reasoning
P ′ρ

.
= P | θ1 and

(τ ′, σ) = θ1σ
′

1
for some θ1 and σ′

1
By completness of unification

B′τ / Sσ Given subderivation D′

B′τ = B′ρτ ′ By equality reasoning
= B′ρ(τ ′, σ) dom(σ) ∩ FV(B′ρ) = ∅
= B′ρ(θ1σ

′

1
) By equality reasoning

= (B′ρθ1)σ
′

1
By assoc. of composition

Sσ = S(τ ′, σ) = S(θ1σ
′

1
) By equality reasoning

= (Sθ1)σ
′

1
By assoc. of composition

B′ρθ1 / Sθ1 | θ2 and
σ′

1
⊆ θ2σ

′

2
for some θ2 and σ′

2
By i.h. on D′

P / S | θ1θ2 By rule
σ ⊆ (τ ′, σ) = θ1σ

′

1
By equality reasoning

⊆ θ1(θ2σ
′

2
) cod(θ1σ

′

1
) = ∅

= (θ1θ2)σ
′

2
By assoc. of composition

2

7.5 Occurs-Check Revisited

Now that the semantics of proof search with free variables has been clari-
fied, we return to the issue that Prolog omits the occurs-check as mentioned
in the last lecture. Instead, it builds circular terms when encountering prob-
lems such as X

.
= f(X).

To understand why, we reconsider the append program.

append(nil, Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

In order to append two ground lists (for simplicity we assume of the same
length), we would issue a query

?- append([x1, . . . , xn], [y1, . . . , yn], Zs).

The fact that the first clause does not apply is discovered in one or two
steps, because nil clashes with cons. We then copy the second clause and
unify [X|Xs] = [x1, . . . , xn]. Assuming all the xi are integers, this oper-
ation will still take O(n) operations because of the occurs-check when uni-
fying Xs = [x2, . . . , xn]. Similarly, unifying Y = [y1, . . . , yn] would

LECTURE NOTES SEPTEMBER 19, 2006

Lifting L7.7

take O(n) steps to perform the occurs-check. Finally the unification in the
last argument [X|Zs1] = Zs just takes constant time.

Then the recursive call looks like

?- append([x2, . . . , xn], [y1, . . . , yn], Zs1).

which again takes O(n) operations. Overall, we will recurse O(n) times,
performing O(n) operations on each call, giving us a complexity of O(n2).
Obviously, this is unacceptable for a simple operations such as appending
two lists, which should be O(n).

We can see that the complexity of this implementation is almost entirely
due to the occurs-check. If we do not perform it, then a query such as the
one in our example will be O(n).

However, I feel the price of soundness is too high. Fortunately, in prac-
tice, the occurs-check can often be eliminated in a sound interpreter or com-
piler. The first reason is that in the presence of mode information, we may
know that some argument in the goal are ground, that is, contain no vari-
ables. In that case, the occurs-check is entirely superfluous.

Another reason is slightly more subtle. As we can see from the opera-
tional semantics, we copy the clause (and the clause head) by applying a
renaming substitution. The variables in the renamed clause head, P ′ρ are
entirely new and are not allowed do not appear in the goal P or the goal
stack S. As a result, we can omit the occurs-check when we first encounter
a variable in the clause head, because that variable couldn’t possible occur
in the goal.

However, we have to be careful for the second occurrence of a variable.
Consider the goal

?- append([], [1|Xs], Xs).

Clearly, this should fail because there is no term t such that [1|t] = t. If
we unify with the clause head append([], Ys, Ys), the first unification
Ys = [1|Xs] can be done without the occurs-check.

However, after the substitution for Ys has been carried out, the third
argument to append yields the problem [1|Xs] = Xs which can only be
solved correctly if the occurs-check is carried out.

If your version of Prolog does not have switch to enable sound uni-
fication to be used in its operational semantics, you can achieve the same
effect using the built-in unify_with_occurs_check/2. For example, we can
rewrite append to the following sound, but ugly program.

LECTURE NOTES SEPTEMBER 19, 2006

L7.8 Lifting

append(nil, Ys, Zs) :- unify_with_occurs_check(Ys, Zs).

append([X|Xs], Ys, [Z|Zs]) :-

unify_with_occurs_check(X, Z),

append(Xs, Ys, Zs).

7.6 Historical Notes

The basic idea of lifting to go from a ground deduction to one with free
variables goes back to Robinson’s seminal work on unification and resolu-
tion [3], albeit in the context of theorem proving rather than logic program-
ming. The most influential early paper on the theory of logic program-
ming is by Van Emden and Kowalski [2], who introduced several model-
theoretic notions that I have replaced here by more flexible proof-theoretic
definitions and relate them to each other. An important completeness re-
sult regarding the subgoal selection strategy was presented by Apt and Van
Emden [1] which can be seen as an analogue to the completeness result we
presented.

7.7 Exercises

Exercise 7.1 Give ground and free variable forms of deduction in a formulation
without an explicit goal stack, but with an explicit program, and show soundness
and completeness of the free variable version.

Exercise 7.2 Fill in the missing cases in the soundness proof for free variable de-
duction.

Exercise 7.3 Give three concrete counterexamples showing that the substitution
property for free variables in an answer substitution fails in the presence of dise-
quality on non-ground goals, negation-as-failure, and cut.

Exercise 7.4 Fill in the missing cases in the completeness proof for free variable
deduction.

Exercise 7.5 Analyze the complexity of appending two ground lists of integers of
length n and k given the optimization that the first occurrence of a variable in a
clause head does not require an occurs-check. Then analyze the complexity if it
is known that the first two argument to append are ground. Which one is more
efficient?

LECTURE NOTES SEPTEMBER 19, 2006

Lifting L7.9

7.8 References

[1] Krzysztof R. Apt and M. H. Van Emden. Contributions to the theory of
logic programming. Journal of the ACM, 29(3):841–862, July 1982.

[2] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the ACM, 23(4):733–742, October
1976.

[3] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, January 1965.

LECTURE NOTES SEPTEMBER 19, 2006

L7.10 Lifting

LECTURE NOTES SEPTEMBER 19, 2006

15-819K: Logic Programming

Lecture 8

Completion

Frank Pfenning

September 21, 2006

In this lecture we extend the ground backtracking semantics to permit free
variables. This requires a stronger normal form for programs. After intro-
ducing this normal form related to the so-call iff-completion of a program,
we give the semantics at which point we have a complete specification of
the pure Prolog search behavior including unification, subgoal selection
and backtracking. At this point we return to the logical meaning of Prolog
programs and derive the iff-completion of a program via a process called
residuation.

8.1 Existential Quantification

First we return to the backtracking semantics with the intent of adding free
variables and unification to make it a fully specified semantics for pure
Prolog.

The first problem is presented by the rules for atomic goals. In a ground
calculus, the rule

∀x. P ′ ← B′ ∈ Γ

dom(τ) = x

cod(τ) = ∅
P ′τ = P B′τ / S / F

P / S / F

is correct only if we stipulate that for every ground atomic goal P there is
exactly one program clause for which the rule above can be applied. Other-
wise, not all failure or choice points would be explicit in the semantics.

LECTURE NOTES SEPTEMBER 21, 2006

L8.2 Completion

Now we need the property that for every atomic goal P (potentially
containing free variables) there is exactly one program clause that applies.
Because goals can have the form p(X1, . . . ,Xn) for variables X1, . . . ,Xn,
this means that for every predicate p there should be only one clause in
the program. Moreover, the head of this clause must unify with every per-
missible goal. At first this may seem far-fetched, but since our extended
language includes equality, we can actually achieve this by transforming
the program so that all clause heads have the form p(X1, . . . ,Xn) for dis-
tinct variables X1, . . . ,Xn.

As an example, consider the member predicate in the form appropriate
for the ground semantics.

member(X, []) :- fail.

member(X, [Y|Ys]) :- X = Y ; member(X, Ys).

We can transform this further by factoring the two cases as

member(X, Ys) :-

(Ys = [], fail) ;

(Ys = [Y|Ys1], (X = Y ; member(X, Ys1))).

This can be simplified, because the first disjunct will always fail.

member(X, Ys) :- Ys = [Y|Ys1], (X = Y ; member(X, Ys1)).

Writing such a program would be considered poor style, since the very first
one is much easier to read. However, as an internal representation it turns
out to be convenient.

We take one more step which, unfortunately, does not have a simple
rendering in all implementations of Prolog. We can simplify the treatment
of atomic goals further if the only free variables in a clause are the ones
appearing in the head. In the member example above, this is not the case,
because Y and Ys1 occur in the body, but not the head. If we had existen-
tial quantification ∃x.A, we could overcome this. In logical form, the rule
would be the following.

∃y.∃ys1. Y s
.
= [y|ys1] ∧ (X

.
= y ∨member(X, ys1)) true

member(X,Y s) true

In some implementations of Prolog, existential quantification is available
with the syntax X^A for ∃x.A.1 Then the program above would read

1You should beware, however, that some implementations of this are unsound in that
the variable X is visible outside its scope.

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.3

member(X, Ys) :-

Y^Ys1^(Ys = [Y|Ys1], (X = Y ; member(X, Ys1))).

On the logical side, This requires a new form of proposition, ∃x.A,
where x is a bound variable with scope A. We assume that we can always
rename bound variables. For example, we consider ∃x.∃y. p(x, x, y) and
∃y.∃z. p(y, y, z) to be identical. We also assume that bound variables (writ-
ten as lower-case identifiers) and free variables (written as upper-case iden-
tifiers) are distinct syntactic classes, so no clash between them can arise.

Strictly speaking we should differentiate between substitutions for vari-
ables x that may be bound, and for logic variables X (also called meta-
variables). At this point, the necessary machinery for this distinction would
yield little benefit, so we use the same notations and postulate the same
properties for both.

Existential quantification is now defined by

A(t/x) true

∃x.A true
∃I

where the the substitution term t is understood to have no free variables
since logical deduction is ground deduction.

When carrying out a substitution θ, we must take care when encounter-
ing a quantifier ∃x.A. If x is in the domain of θ, we should first rename it to
avoid possible confusion between the bound x and the x that θ substitutes
for. The second condition is that x does not occur in the co-domain of θ.
This condition is actually vacuous here (t is closed), but required in more
general settings.

(∃x.A)θ = ∃x. (Aθ) provided x /∈ dom(θ) ∪ cod(θ)

Recall the convention that bound variables can always be silently renamed,
so we can always satisfy the side condition no matter what θ is.

The search semantics for existential quantification comes in two flavors:
in the ground version we guess the correct term t, in the free variable ver-
sion we substitute a fresh logic variable.

A(t/x) / S

∃x.A / S

A(X/x) / S | θ X /∈ FV(∃x.A / S)

∃x.A / S | θ

Since X does not occur in ∃x.A / S, we could safely restrict θ in the con-
clusion to remove any substitution term for X.

LECTURE NOTES SEPTEMBER 21, 2006

L8.4 Completion

8.2 Backtracking Semantics with Free Variables

Now we assume the program is in a normal form where for each atomic
predicate p of arity n there is exactly one clause

∀x1 . . . ∀xn. p(x1, . . . xn)← B′

where the FV(B′) ⊆ {x1, . . . , xn}.

We will not endeavor to return the answer substitution from the free
variable judgment, but just describe the computation to either success or
failure. The extension to compute an answer substitution requires some
thought, but does not add any essentially new elements (see Exercise 8.1).
Therefore, the we write A / S / F where A, S, and F may have free
variables. The intended interpretation is that if A / S / F in the free
variable semantics then there exists a grounding substitution σ such that
Aσ / Sσ / Fσ in the ground semantics. This is not very precise, but suffi-
cient for our purposes.

First, the rules for conjunction and truth. They are the same in the free
and ground semantics.

A / B ∧ S / F

A ∧B / S / F

B / S / F

> / B ∧ S / F > / > / F

Second, the rules for disjunction and falsehood. Again, it plays no role if
the goals are interpreted as closed or with free variables.

A / S / (B ∧ S) ∨ F

A ∨B / S / F

B / S′ / F

⊥ / S / (B ∧ S′) ∨ F

fails (no rule)

⊥ / S / ⊥

Third, the equality rules. Clearly, these involve unification, so substitutions
come into play.

t
.
= s | θ > / Sθ / F

t
.
= s / S / F

there is no θ with t
.
= s | θ ⊥ / S / F

t
.
= s / S / F

When unification succeeds, the most general unifier θ must be applied to
the success continuation S which shares variables with t and s. But we
do not apply the substitution to F . Consider a goal of the form (X

.
= a ∧

p(X)) ∨ (X
.
= b∧ q(X)) to see that while we try the first disjunction, X

.
= a

the instantiations of X should not affect the failure continuation.

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.5

The rule for existentials just introduces a globally fresh logic variable.

A(X/x) / S / F X /∈ FV(∃x.A / S / F)

∃x.A / S / F

Finally the rule for atomic propositions. Because of the normal form
for each clause in the program, this rule no longer involves unification or
generation of fresh variables. Such considerations have now been relegated
to the cases for equality and existential quantification.

(∀x. p(x)← B′) ∈ P B′(t/x) / S / F

p(t) / S / F

Here we wrote t/x as an abbreviation for the substitution t1/x1, . . . , tn/xn

where t = t1, . . . , tn and x = x1, . . . , xn.

8.3 Connectives as Search Instructions

The new operational semantics, based on the normal form for programs,
beautifully isolates various aspects of the operational reading for logic pro-
grams. It is therefore very useful as an intermediate form for compilation.

Procedure Call (p(t)). An atomic goal p(t) now just becomes a procedure
call, interpreting a predicate p as a procedure in logic programming. We
use a substitution t/x for parameter passing if the clause is ∀x. p(x) ← B′

and FV(B′) ⊆ x.

Success (>). A goal > simply succeeds, signaling the current subgoal has
been solved. Stacked up subgoals are the considered next.

Conjunctive choice (A∧B). A conjunction A∧B represents two subgoals
that have to be solved. The choice is which one to address first. The rule
for conjunction says A.

Failure (⊥). A goal ⊥ simply fails, signaling the current subgoal fails. We
backtrack to previous choice points, exploring alternatives.

Disjunctive choice (A ∨ B). A disjunction A ∨ B represents a choice be-
tween two possibly path towards a solution. The rules for disjunction say
we try A first and later B (if A fails).

LECTURE NOTES SEPTEMBER 21, 2006

L8.6 Completion

Existential choice (∃x.A). An existential quantification ∃x.A represents
the choice which term to use for x. The rule for existential quantification
says to postpone this choice and simply instantiate x with a fresh logic
variable to be determined later during search by unification.

Unification (t
.
= s). An equality t

.
= s represents a call to unification, to

determine some existential choices postponed earlier in a least committed
way (if a unifier exists) or fail (if no unifier exists).

Let us read the earlier member program as a sequence of these instruc-
tions.

member(X, Ys) :-

Y^Ys1^(Ys = [Y|Ys1], (X = Y ; member(X, Ys1))).

Given a procedure call

?- member(t, s).

we substitute actual arguments for formal parameters, reaching

?- Y^Ys1^(s = [Y|Ys1], (t = Y ; member(t, Ys1))).

We now create fresh variables Y and Ys1 (keeping their names for simplicity),
yielding

?- (s = [Y|Ys1], (t = Y ; member(t, Ys1))).

Now we have two subgoals to solve (a conjunction), which means we solve
the left side first by unifying s, the second argument in the call to member,
with [Y|Ys1]. If this fails, we fail and backtrack. If this succeeds, we apply
the substitution to the second subgoal.

Let us assume s = [s1|s2], so that the substitution will be s1/Y, s2/Y s1.
Then we have to solve

?- t = s1 ; member(t, s2).

Now we have a disjunctive choice, so we first try to unify t with s1, push-
ing the alternative onto the failure continuation. If unification succeeds, we
succeed with the unifying substitution. Note that besides the unifying sub-
stitution, we have also changed the failure continuation by pushing a call to
member onto it. If the unification fails, we try instead the second alternative,
calling member recursively.

?- member(t, s2).

I hope this provides some idea how the body of the member predicate could
be compiled to a sequence of instructions for an abstract machine.

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.7

8.4 Logical Semantics Revisited

So far, we have carefully defined truth for all the connectives and quantifers
except for universal quantification and implication which appeared only in
the program. These introduction rules show how to establish that a given
proposition is true. For universal quantification and implication we follow
a slight different path, because from the logical point of view the program is
a set of assumptions, not something we are trying to prove. In the language
of judgments, we are dealing with a so-called hypothetical judgment

Γ ` A true

where Γ represents the program. It consists of a collection of propositions
D1 true, . . . ,Dn true .

In logic programming, occurrences of logical connectives are quite re-
stricted. In fact, as we noted at the beginning, pure Prolog has essentially
no connectives, just atomic predicates and inference rules. We have only
extended the language in order to accurately describe search behavior in
a logical notation. The restrictions are different for what is allowed as a
program clause and what is allowed as a goal. So for the remainder of
this lecture we will use G to stand for legal goals and D to stand for legal
program propositions.

We summarize the previous rules in this slightly generalized form.

Γ ` G1 true Γ ` G2 true

Γ ` G1 ∧G2 true
∧I

Γ ` > true
>I

Γ ` G1 true

Γ ` G1 ∨G2 true
∨I1

Γ ` G2 true

Γ ` G1 ∨G2 true
∨I2

no rule
Γ ` ⊥ true

Γ ` t
.
= t true

.
=I

Γ ` G(t/x) true

Γ ` ∃x.G true
∃I

When the goal is atomic, we have to use an assumption, corresponding
to a clause in the program. Choosing a particular assumption and then
breaking down its structure as an assumption is called focusing. This is a
new judgment Γ;D true ` P true . The use of the semi-colon here “;” is
unrelated to its use in Prolog where it denotes disjunction. Here is just
isolates a particular assumption D. We call this the focus rule.

D ∈ Γ Γ;D true ` P true

Γ ` P true
focus

LECTURE NOTES SEPTEMBER 21, 2006

L8.8 Completion

When considering which rules should define the connectives in D it
is important to keep in mind that the rules now define the use of an as-
sumption, rather than how to prove its truth. Such rules are called left rules
because the apply to a proposition to the left of the turnstile symbol ‘`’.

First, if the assumption is an atomic fact, it must match the conclusion.
In that case the proof is finished. We call this the init rule for initial sequent.

Γ;P true ` P true
init

Second, if the assumption is an implication we would have written P ← B

so far. We observe that B will be a subgoal, so we write it as G. Further,
P does not need to be restricted to be an atom—it can be an arbitrary legal
program formula D. Finally, we turn around the implication into the more
customary form G ⊃ D.

Γ;D true ` P true Γ ` G true

Γ;G ⊃ D true ` P true
⊃L

Here, G actually appears as a subgoal in one premise and D as an assump-
tion in the other, which is a correct given the intuitive meaning of implica-
tion to represent clauses.

If we have a universally quantified proposition, we can instantiate it
with an arbitrary (closed) term.

Γ;D(t/x) true ` P true

Γ;∀x.D true ` P true
∀L

It is convenient to also allow conjunction to combine multiple clauses for
a given predicate. Then the use of a conjunction reduces to a choice about
which conjunct to use, yielding two rules.

Γ;D1 true ` P true

Γ;D1 ∧D2 true ` P true
∧L1

Γ;D2 true ` P true

Γ;D1 ∧D2 true ` P true
∧L2

We can also allow truth, but there is no rule for it as an assumption

no rule
Γ;> true ` P true

since the assumption that > is true gives us no information for proving P .

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.9

We have explicitly not defined how to use disjunction, falsehood, equal-
ity, or existential quantification, or how to prove implication or universal
quantification. This is because attempting to add such rules would sig-
nificantly change the nature of logic programming. From the rules, we can
read off the restriction to goals and program as conforming to the following
grammar.

Goals G ::= P | G1 ∧G2 | > | G1 ∨G2 | ⊥ | t
.
= s | ∃x.G

Clauses D ::= P | D1 ∧D2 | > | G ⊃ D | ∀x.D

Clauses in this form are equivalent to so-called Horn clauses, which is why
it is said that Prolog is based on the Horn fragment of first-order logic.

8.5 Residuation

A program in the form described above is rather general, but we can trans-
form it into the procedure call form described earlier with a straightforward
and elegant algorithm. To begin, for any predicate p we collect all clauses
contributing to the definition of p into a single proposition Dp, which is the
conjunction of the universal closure of the clauses whose head has the form
p(t). For example, given the program

nat(z).

nat(s(N)) :- nat(N).

plus(z, N, N).

plus(s(M), N, s(P)) :- plus(M, N, P).

we generate a logical rendering in the form of two propositions:

Dnat = nat(z) ∧ ∀n. nat(n) ⊃ nat(s(n)),
Dplus = (∀n. plus(z, n, n))

∧ ∀m.∀n.∀p. plus(m,n, p) ⊃ plus(s(m), n, s(p))

The idea now is that instead of playing through the choices for breaking
down Dp when searching for a proof of

Γ;Dp ` p(t)

we residuate those choices into a goal whose search behavior is equivalent.
If we write the residuating judgment as

Dp ` p(x) > G

LECTURE NOTES SEPTEMBER 21, 2006

L8.10 Completion

then the focus rule would be

Dp ∈ Γ Dp ` p(x) > Gp Γ ` Gp(t/x)

Γ ` p(t)

Residuation must be done deterministically and is not allowed to fail, so that
we can view Gp as the compilation of p(x), the parametric form of a call to
p.

To guide the design of the rules, we will want that if Dp ` p(x) > G

then Γ;Dp ` p(t) iff Γ ` G(t/x). Further more, if Dp and p(x) are given,
then there exists a unique G such that Dp ` p(x) > G.

p′(s) ` p(x) > p′(s)
.
= p(x)

D1 ` p(x) > G1 D2 ` p(x) > G2

D1 ∧D2 ` p(x) > G1 ∨G2

> ` p(x) > ⊥

D ` p(x) > G1

G ⊃ D ` p(x) > G1 ∧G

D ` p(x) > G y /∈ x

∀y.D ` p(x) > ∃y.G

The side condition in the last rule can always be satisfied by renaming of
the bound variable x.

First, the soundness of residuation. During the proof we will discover
a necessary property of deductions, called a substitution property. You may
skip this and come back to it once you understands its use in the proof
below.

Lemma 8.1 If D ` p(x) > G and y /∈ x, then D(s/y) ` p(x) > G(s/y) for any
closed term s. Moreover, if the original derivation is D, the resulting derivation
D(s/y) has exactly the same structure as D.

Proof: By induction on the structure of the derivation for D ` p(x) > G.
In each case we just apply the induction hypothesis to all premisses and
rebuild the same deduction from the results. 2

Now we can prove the soundness.

Theorem 8.2 If D ` p(x) > G for x ∩ FV(D) = ∅ and Γ ` G(t/x) for ground
t then Γ;D ` p(t).

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.11

Proof: By induction on the structure of the deduction of the given residu-
ation judgment, applying inversion to the second given deduction in each
case. All cases are straightforward, except for the case of quantification
which we show.

Case: D =

D1

D1 ` p(x) > G1 y /∈ x

∀y.D1 ` p(x) > ∃y.G1

where D = ∀y.D1 and G = ∃y.G1.

Γ ` (∃y.G1)(t/x) Assumption
Γ ` ∃y.G1(t/x) Since y /∈ x and t ground
Γ ` G1(t/x)(s/y) for some ground s By inversion
Γ ` G1(s/y)(t/x) Since y /∈ x and t and s ground
D1(s/y) ` p(x) > G1(s/y) By substitution property for residuation
Γ;D1(s/y) ` p(t) By i.h. on D1(s/y)
Γ;∀y.D1 ` p(t) By rule

We may apply the induction hypothesis to D1(s/y) because D1 is a
subdeduction of D, and D1(s/y) has the same structure as D1.

2

Completeness follows a similar pattern.

Theorem 8.3 If D ` p(x) > G with x∩FV(D) = ∅ and Γ;D ` p(t) for ground
t then Γ ` G(t/x)

Proof: By induction on the structure of the given residuation judgment, ap-
plying inversion to the second given deduction in each case. In the case for
quantification we need to apply the substitution property for residuation,
similarly to the case for soundness. 2

Finally, termination and uniqueness.

Theorem 8.4 If D and p(x) are given with x ∩ FV(D) = ∅, then there exists a
unique G such that D ` p(x) > G.

Proof: By induction on the structure of D. There is exactly one rule for
each form of D, and the propositions are smaller in the premisses. 2

LECTURE NOTES SEPTEMBER 21, 2006

L8.12 Completion

8.6 Logical Optimization

Residuation provides an easy way to transform the program into the form
needed for the backtracking semantics with free variables. For each predi-
cate p we calculate

Dp ` p(x) > Gp

and then replace Dp by
∀x. p(x)← Gp.

With respect to the focusing semantics, Dp is equivalent to the new formu-
lation (see Exercise 8.4).

We reconsider the earlier example.

Dnat = nat(z) ∧ ∀n. nat(n) ⊃ nat(s(n)),
Dplus = (∀n. plus(z, n, n))

∧ ∀m.∀n.∀p. plus(m,n, p) ⊃ plus(s(m), n, s(p))

Running our transformation judgment, we find

Dnat ` nat(x) > nat(z)
.
= nat(x) ∨ ∃n. nat(s(n))

.
= nat(x) ∧ nat(n)

Dplus ` plus(x1, x2, x3) > (∃n. plus(z, n, n)
.
= plus(x1, x2, x3))∨

(∃m.∃n.∃p. plus(s(m), n, s(p))
.
= plus(x1, x2, x3) ∧ plus(m,n, p)).

These compiled forms can now be the basis for further simplification and
optimizations. For example,

Gplus = (∃n. plus(z, n, n)
.
= plus(x1, x2, x3)) ∨ . . .

Given our knowledge of unification, we can simplify this equation to three
equations.

G′

plus = (∃n. z = x1 ∧ n = x2 ∧ n = x3) ∨ . . .

Since n does not appear in the first conjunct, we can push in the existential
quantifier, postponing the creation of an existential variable.

G′′

plus = (z = x1 ∧ ∃n. n = x2 ∧ n = x3) ∨ . . .

The next transformation is a bit trickier, but we can see that there exists an
n which is equal to x2 and x3 iff x2 and x3 are equal. Since n is a bound vari-
able occurring nowhere else, we can exploit this observation to elimination
n altogether.

G′′′

plus = (z = x1 ∧ x2 = x3) ∨ . . .

The optimized code will unify the first argument with z and, if this suc-
ceeds, unify the second and third arguments.

LECTURE NOTES SEPTEMBER 21, 2006

Completion L8.13

8.7 Iff Completion

We now revisit the normal form ∀x. p(x) ← Gp. Since this represents the
only way of succeeding in a proof of p(t), we can actually turn the implica-
tion around, replacing it by an if and only if (↔)

∀x. p(x)↔ Gp.

Of course, this proposition is outside the fragment that is amenable to logic
programming search (considering the right-to-left implication), but it has
found some application in the notion of definitional reflection, where it is
usually written as

∀x. p(x)
4

= Gp.

This allows us to draw conclusions that the program alone does not permit,
specifically about the falsehood of propositions.

We do not have the formal reasoning rules available to us at this point,
but given the (slightly optimized) iff-completion of nat,

∀x. nat(x)↔ z
.
= x ∨ ∃n. s(n)

.
= x ∧ nat(n)

we would be able to prove, explicitly with formal rules, that nat(a) is false
for a new constant a, because a is neither equal to z nor to s(n) for some n.

Unfortunately the expressive power of the completion is still quite lim-
ited in that it is much weaker than induction.

8.8 Historical Notes

The notion of iff-completion goes back to Clark [2] who investigated no-
tions of negation and their justification in the early years of logic program-
ming.

The use of goal-directed search and focusing to explain logic program-
ming goes back to Miller et al. [3], who tested various extensions of the
logic presented here for suitability as the foundation for a logic program-
ming language.

The use of residuation for compilation and optimization has been pro-
posed by Cervesato [1], who also shows that the ideas are quite robust by
addressing a much richer logic.

The notion of definitional reflection goes back to Schroeder-Heister [5]
who also examined its relationship to completion [4]. More recently, reflec-
tion has been employed in a theorem prover derived from logic program-
ming [6] in the Bedwyr system.

LECTURE NOTES SEPTEMBER 21, 2006

L8.14 Completion

8.9 Exercises

Exercise 8.1 Extend the free variable semantics with backtracking to explicitly
return an answer substitution θ. State the soundness and completness of this
semantics with respect to the one that does not explicitly calculate the answer sub-
stitution. If you feel brave, prove these two theorems.

Exercise 8.2 Prove that the free variable backtracking semantics given in lecture
is sound and complete with respect to the ground semantics.

Exercise 8.3 Prove the completeness of residuation.

Exercise 8.4 Given soundness and completeness of residuation, show that if we
replace programs Dp by ∀x. p(x)← Gp where Dp ` p(x) > Gp then the focusing
semantics is preserved.

8.10 References

[1] Iliano Cervesato. Proof-theoretic foundation of compilation in logic
programming languages. In J. Jaffar, editor, Proceedings of the Joint In-
ternational Conference and Symposium on Logic Programming (JICSLP’98),
pages 115–129, Manchester, England, June 1998. MIT Press.

[2] Keith L. Clark. Negation as failure. In H. Gallaire and J. Minker, edi-
tors, Logic and Databases, pages 293–322. Plenum Press, New York, 1978.

[3] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[4] Peter Schroeder-Heister. Definitional reflection and the completion.
In R. Dyckhoff, editor, Proceedings of the 4th International Workshop on
Extensions of Logic Programming, pages 333–347. Springer-Verlag LNCS
798, March 1993.

[5] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi,
editor, Proceedings of the 8th Annual Symposium on Logic in computer Sci-
ence (LICS’93), pages 222–232, Montreal, Canada, July 1993. IEEE Com-
puter Society Press.

[6] Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite suc-
cess and finite failure in an automated prover. In C.Benzmüller,
J.Harrison, and C.Schürmann, editors, Proceedings of the Workshop on
Empirically Successful Automated Reasnoing in Higher-Order Logics (ES-
HOL’05), pages 79–98, Montego Bay, Jamaica, December 2005.

LECTURE NOTES SEPTEMBER 21, 2006

15-819K: Logic Programming

Lecture 9

Types

Frank Pfenning

September 26, 2006

In this lecture we introduce types into logic programming, primarily to
distinguish meaningful from meaningless terms and propositions, thereby
capturing errors early during program development.

9.1 Views on Types

Types are a multi-faceted concept, and also subject of much debate. We
will discuss some of the views that have been advanced regarding the role
of types in logic programming, and then focus on the one we find most
useful and interesting.

Descriptive Types. In logic programming terminology, a type system is
called descriptive if it captures some aspect of program behavior, where pro-
gram behavior is defined entirely without reference to types. A common
example is to think of a type as an approximation to the success set of the
program, that is, the set of terms on which it holds. Reconsider addition on
unary numbers:

plus(z, N, N).

plus(s(M), N, s(P)) :- plus(M, N, P).

We can see that if plus(t1, t2, t3) is true according to this definition, then
t1 must be a natural number, that is, nat(t1) according to the definition

nat(z).

nat(s(N)) :- nat(N).

LECTURE NOTES SEPTEMBER 26, 2006

L9.2 Types

On the other hand, nothing interesting can be said about the other two
arguments, because the first clause as written permits non-sensical propo-
sitions such as plus(z, [], []) to be true.

The nature of descriptive types means that usually they are used to opti-
mize program behavior rather than as an aid to the programmer for writing
correct code.

Prescriptive Types. A type system is called prescriptive if it is an integral
part of the meaning of programs. In the example above, if we prescribe
that plus is a relation between three terms of type nat, then we suddenly
differentiate well-typed expressions (such as plus(z, s(z), P) when P is
a variable of type nat) from expressions that are not well-typed and there-
fore meaningless (such as plus(z, [], []). Among the well-typed ex-
pressions we then further distinguish those propositions which are true
and those which are false.

Prescriptive types, in a well-designed type system, are immediately
useful to the programmer since many accidental mistakes in the program
will be captured rather then leading to either failure or success, which may
be very difficult to debug. In some ways, the situation in pure Prolog is
worse than in other dynamically typed languages such as Lisp, because in
the latter language you will often get a run-time error for incorrect pro-
grams, while in pure Prolog everything is either true or false. This is some-
what overstates the case, since many built-in predicates have dynamically
enforced type restrictions. Nevertheless programming with no static and
few dynamic errors becomes more and more difficult as programs grow
larger. I recognize that it may be somewhat difficult to fully appreciate the
point if you write only small programs as you do in this class (at least so
far).

Within the prescriptive type approach, we can make further distinction
as to the way types are checked or expressed.

Monadic Propositions as Types. In this approach types are represented
as monadic predicates, such as nat above. This approach is prevalent in
the early logic programming literature, and it is also the prevalent view
classical logic. The standard answer to the question why the traditional
predicate calculus (also known as classical first-order logic) is untyped is
that types can be eliminated in favor of monadic predicates. For example,
we can translate ∀x:nat. A into ∀x. nat(x) ⊃ A, where x now ranges over
arbitrary terms. Similarly, ∃x:nat. A becomes ∃x. nat(x) ∧A.

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.3

In a later lecture we will see that this view is somewhat difficult to sus-
tain in the presence of higher-order predicates, that is, predicates that take
other predicates as arguments. The corresponding higher-order logic, also
known as Church classical theory of types, therefore has a different con-
cept of type called simple. Fortunately, the two ideas are compatible, and it
is possible to refine the simple type system using the ideas behind monadic
propositions, but we have to postpone this idea to a future lecture.

Simple Types. In this approach types are explicitly declared as new en-
tities, separately from monadic propositions. Constructors for types in the
form of constants and function symbols are also separately declared. Often,
types are disjoint so that a given term has a unique type. In the example
above, we might declare

nat : type.

z : nat.

s : nat -> nat.

plus : nat, nat, nat -> o.

where o is a distinguished type of propositions. The first line declares nat
to be a new type, the second and third declare z and s as constructors for
terms of type nat, and the last line declares plus as a predicate relating
three natural numbers.

With these declarations, an expression such as plus(z, [], []) can be
readily seen as ill-typed, since the second and third argument are presum-
ably of type list and not nat. Moreover, in a clause plus(z, N, N) it is
clear that N is a variable ranging only over terms of type nat.

In this lecture we develop a system of simple types. One of the difficulty
we encounter is that generic data structures, including even simple lists, are
difficult to deal with unless we have a type of all terms, or permit variables
types. For example, while lists of natural numbers are easy

natlist : type.

[] : natlist.

[_|_] : nat, natlist -> natlist.

there is no easy way to declare lists with elements of unknown or arbitrary
type. We will address this shortcoming in the next lecture.

LECTURE NOTES SEPTEMBER 26, 2006

L9.4 Types

9.2 Signatures

Simple types rely on explicit declarations of new types, and of new con-
structors together with their type. The collection of such declarations is
called a signature. We assume a special type constant o (omicron) that
stands for the type of propositions. We use the letters τ and σ for newly
declared types. These types will always be atomic and not include o.1

Signature Σ ::= · empty signature
| Σ, τ : type type declaration
| Σ, f : τ1, . . . , τn → τ function symbol declaration
| Σ, p : τ1, . . . , τn → o predicate symbol declaration

As usual, we will abbreviate sequences of types by writing them in bold-
face, τ or σ. Also, when a sequence of types is empty we may abbreviate
c : · → τ by simply writing c : τ and similarly for predicates. All types,
functions, and predicates declared in a signature must be distinct so that
lookup of a symbol is always unique.

Despite the suggestive notation, you should keep in mind that “→” is
not a first class constructor of types, so that, for example, τ → τ is not a
type for now. The only true types we have are atomic type symbols. This
is similar to the way we developed logic programming: the only proposi-
tions we had were atomic, and the logical connectives only came in later to
describe the search behavior of logic programs.

9.3 Typing Propositions and Terms

There are three basic judgments for typing: one for propositions, one for
terms, and one for sequences of terms. All three require a context ∆ in
which the types of the free variables in a proposition or term are recorded.

Typing Context ∆ ::= · | ∆, x:τ

We assume all variables in a context are distinct so that the type assigned
to a variable is unique. We write dom(∆) for the set of variables declared
in a context.

A context ∆ represents assumptions on the types of variables and is
therefore written on the left side of a turnstile symbol ‘`’, as we did with

1Allowing τ to be o would make the logic higher order, which we would like to avoid
for now.

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.5

logic programs before.

Σ;∆ ` A : o A is a valid proposition
Σ;∆ ` t : τ term t has type τ

Σ;∆ ` t : τ sequence t has type sequence τ

Because the signature Σ never changes while type-checking, we omit it
from the judgments below and just assume that there is a fixed signature Σ
in the background theory.

The rules for propositions are straightforward. As is often the case,
these rules, read bottom-up, have an interpretation as an algorithm for
type-checking.

∆ ` A : o ∆ ` B : o

∆ ` A ∧B : o ∆ ` > : o

∆ ` A : o ∆ ` B : o

∆ ` A ∨B : o ∆ ` ⊥ : o

∆ ` A : o ∆ ` B : o

∆ ` A ⊃ B : o

p : τ → o ∈ Σ ∆ ` t : τ

∆ ` p(t) : o

For equality, we demand that the terms we compare have the same type τ ,
whatever that may be. So rather than saying that, for example, zero is not
equal to the empty list, we consider such a question meaningless.

∆ ` t : τ ∆ ` s : τ

∆ ` t
.
= s : o

In the rules for quantifiers, we have to recall the convention that bound
variables can be renamed silently. This is necessary to ensure that the vari-
able declarations we add to the context do not conflict with existing decla-
rations.

∆, x:τ ` A : o x /∈ dom(∆)

∆ ` ∀x:τ.A : o

∆, x:τ ` A : o x /∈ dom(∆)

∆ ` ∃x:τ.A : o

While we have given the condition x /∈ dom(∆) in these two rules, in prac-
tice they are often omitted by convention.

LECTURE NOTES SEPTEMBER 26, 2006

L9.6 Types

Next we come to typing terms and sequences of terms.

f : τ → σ ∈ Σ ∆ ` t : τ

∆ ` f(t) : σ

x:τ ∈ ∆

∆ ` x : τ

∆ ` t : τ ∆ ` t : τ

∆ ` (t, t) : (τ, τ) ∆ ` (·) : (·)

This system does not model the overloading for predicate and function
symbols at different arities that is permitted in Prolog. In this simple first-
order language this is relatively easy to support, but left as Exercise 9.2.

9.4 Typing Substitutions

In order to integrate types fully into our logic programming language, we
need to type all the artifacts of the operational semantics. Fortunately, the
success and failure continuations are propositions for which typing is al-
ready defined, and the same is true for programs. This leaves substitutions,
as calculated by unification.

For a substitution, we just demand that if we substitute t for x and x has
type τ , the t also must have type τ . We write the judgment as ∆ ` θ subst ,
expressing that θ is a well-typed substitution.

x:τ ∈ ∆ ∆ ` t : τ

∆ ` (θ, t/x) subst ∆ ` (·) subst

Our prior conventions that all the variables defined by a substitution are
distinct, and that the domain and codomain of a substitution are disjoint
also still apply. Because we would like to separate typing from other con-
siderations, they are not folded into the rules above which could easily be
done.

9.5 Types and Truth

Now that we have extended our language to include types, we need to
consider how this affects the various judgment we have. The most basic
one is truth. Since this is defined for ground expression (that is, expression
without free variables), we do not need to generalize this to carry a context
∆, although it will have to carry a signature Σ. We leave this implicit as in
the presentation of the typing judgments.

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.7

We presuppose that any proposition we write is a well-typed proposi-
tion, that is, has type o. In other words, if we write A true we implicitly
assume that · ` A : o. We have to be careful that our rules maintain this
property, and in which direction the rule is read. For example, when the
rule

Γ ` A true

Γ ` A ∨B true
∨I

is read from the premiss to the conclusion, then we would need a second
premiss to check that B : o.

However, we prefer to read it as “Assuming A ∨ B is a valid proposition,
A ∨B is true if A is true.” In this reading, the condition on B is implicit.

Since the bottom-up reading of rules is pervasive in logic programming,
we will adopt the same here. Then, only the rules for quantifiers require an
additional typing premiss. Recall that Γ represents a fixed program.

· ` t : τ Γ ` A(t/x) true

Γ ` ∃x:τ.A true
∃I

· ` t : τ Γ;A(t/x) true ` P true

Γ;∀x:τ.A ` P true
∀L

This assumes that if we substitute a term of type τ for a variable of type τ ,
the result will remain well-typed. Fortunately, this property holds and is
easy to prove.

Theorem 9.1 Assume ∆ ` θ subst .

1. If ∆ ` t : τ then ∆ ` tθ : τ .

2. If ∆ ` t : τ then ∆ ` tθ : τ .

3. If ∆ ` A : o then ∆ ` Aθ : o.

Proof: By mututal induction on the structure of the given typing deriva-
tions for t, t, and A. 2

9.6 Type Preservation

A critical property tying together a type system with the operational se-
mantics for a programming language is type preservation. It expresses that
if we start in a well-typed state, during the execution of a program all in-
termediate states will be well-typed. This is an absolutely fundamental
property without which a type system does not make much sense. Either
the type system or the operational semantics needs to be revised in such a
case so that they match at least to this extent.

LECTURE NOTES SEPTEMBER 26, 2006

L9.8 Types

∆ ` G1 / G2 ∧ S / F

∆ ` G1 ∧G2 / S / F

∆ ` G2 ∧ S / F

∆ ` > / G2 ∧ S / F ∆ ` > / > / F

∆ ` G1 / S / (G2 ∧ S) ∨ F

∆ ` G1 ∨G2 / S / F

∆ ` G2 / S′ / F

∆ ` ⊥ / S / (G2 ∧ S′) ∨ F

fails (no rule)

∆ ` ⊥ / S / ⊥

∆ ` t
.
= s | θ ∆ ` > / Sθ / F

∆ ` t
.
= s / S / F

there is no θ with
∆ ` t

.
= s | θ ∆ ` ⊥ / S / F

∆ ` t
.
= s / S / F

∆, x:τ ` G / S / F x /∈ dom(∆)

∆ ` ∃x:τ.G / S / F

(∀x. p(x)← G) ∈ Γ ∆ ` G(t/x) / S / F

∆ ` p(t) / S / F

Figure 1: Operational Semantics Judgment

It is worth stepping back to make explicit in which way the inference
rules for our last judgment (with goal stack, failure continuation, and free
variables) constitute a transition system for an abstract machine. We will
add a context ∆ to the judgment we had so far in order to account for the
types of the free variables. For, in the form of inference rules from last
lecture. We assume the clauses for each predicate p are in a normal form
∀x. p(x) ← B′, all collected in a fixed program Γ, and that a signature Σ is
also fixed.

Each rule with one premise can be seen as a state transition rule. For
example, the very first rule becomes

(∆ ` A ∧B / S / F)⇒ (∆ ` A / B ∧ S / F).

We do not write down the others, which can be obtained by simple two-
dimensional rearrangement.

The state ∆ ` > / > / F is a final state (success) since the corresponding
rule has no premiss, as is the state ∆ ` ⊥ / S / ⊥ (failure) since there is no
corresponding rule.

The rules for equality have two premisses and make up two conditional

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.9

transition rules.

(∆ ` t
.
= s / S / F) ⇒ (∆ ` > / Sθ / F) provided ∆ ` t

.
= s | θ

(∆ ` t
.
= s / S / F) ⇒ (∆ ` ⊥ / Sθ / F) provided there is no θ with

∆ ` t
.
= s | θ

In order to state type preservation, we need a judgment of typing for a
state of the abstract machine, ∆ ` G / S / F state . It is defined by a single
rule.

∆ ` G : o ∆ ` S : o ∆ ` F : o

∆ ` G / S / F state

In addition, we assume that G, S, and F have the shape of a goal, goal
stack, and failure continuation, respectively, following this grammar:

Goals G ::= G1 ∧G2 | > | G1 ∨G2 | ⊥ | t
.
= s | ∃x:τ.G | p(t)

Goal Stacks S ::= > | G ∧ S

Failure Conts F ::= ⊥ | (G ∧ S) ∨ F

The preservation theorem now shows that if state s is valid and s⇒ s′,
then s′ is valid. To prove this we first need a lemma about unification.

Theorem 9.2 If ∆ ` t : τ and ∆ ` s : τ and ∆ ` s
.
= t | θ then ∆ ` θ subst .

Similarly, if ∆ ` t : τ and ∆ ` s : τ and ∆ ` s
.
= t | θ then ∆ ` θ subst .

Proof: By mutual induction on the structures of D of ∆ ` s
.
= t | θ and D′

of ∆ ` s
.
= t | θ, applying inversion to the derivations of ∆ ` t : τ and

∆ ` s : τ as needed. 2

Now we can state (and prove) preservation.

Theorem 9.3 If ∆ ` G / S / F state and (∆ ` G / S / F)⇒ (∆′ ` G′ / S′ /

F ′) then ∆′ ` G′ / S′ / F ′ state .

Proof: First we apply inversion to conclude that G, S, and F are all well-
typed propositions. Then we distinguish cases on the transition rules, ap-
plying inversion to the typing derivations for G, S, and F as needed to
reassemble the derivations that G′, S′, and F ′ are also well-typed.

In the case for unification we appeal to the preceding lemma, and the
lemma that applying well-typed substitutions preserves typing.

In the case for existential quantification, we need an easy lemma that
we can always add a new typing assumption to a given typing derivation.
2

LECTURE NOTES SEPTEMBER 26, 2006

L9.10 Types

9.7 The Phase Distinction

While the operational semantics (including unification) preserves types, it
does not refer to them during execution. In that sense, the types appearing
with quantifiers or the context ∆ are not necessary to execute programs.
This means that our type system obeys a so-called phase distinction: we can
type-check our programs, but then execute programs without further ref-
erence to types. This is a desirable property since it tells us that there is no
computational overhead to types at all. On the contrary: types could help
a compiler to optimize the program because it does not have to account
for the possibility of ill-typed expressions. Types also help us to sort out
ill-formed expressions, but they do not change the meaning or operational
behavior of the well-formed ones. Generally, as type systems become more
expressive, this property is harder to maintain as we will see in the next
lecture.

9.8 Historical Notes

Type systems have a long and rich history, having been developed origi-
nally to rule out problems such as Russell’s paradox [3] in the formulation
of expressive logics for the formalization of mathematics. Church’s theory
of types [1] provided a great simplification and is also known as classical
higher-order logic. It uses a type o (omicron) of propositions, a single type
ι (iota) for individuals, and closes types under function spaces.

In logic programming, the use of types was slow to arrive since the
predicate calculus (its logical origin) does not usually employ them. Var-
ious articles on notion of types in logic programming are available in an
edited collection [2].

9.9 Exercises

Exercise 9.1 The notion of type throws a small wrinkle on the soundness and
non-deterministic completeness of an operational semantics with free variables.
The new issue is the presence of possibly empty types, either because there are no
constructors, or the constructors are such that no ground terms can be formed.
Discuss the issues.

Exercise 9.2 Write out an extension of the system of simple types given here
which permits Prolog-like overloading of function and predicate symbols at dif-
ferent arity. Your extension should continue to satisfy the preservation theorem.

LECTURE NOTES SEPTEMBER 26, 2006

Types L9.11

Exercise 9.3 Write a Prolog program for type checking propositions and terms.
Extend your program to type inference where the types on quantifiers are not ex-
plicit, generating an explicitly typed proposition (if it is indeed well-typed).

Exercise 9.4 Rewrite the operational rules so that unification is explicitly part of
the transitions for the abstract machine, rather than a condition.

Exercise 9.5 Show the cases for unification, existential quantification, and atomic
goals in the proof of the type preservation theorem in detail.

Exercise 9.6 Besides type preservation, another important property for a lan-
guage is progress: any well-formed state of an abstract machine is either an ex-
plicitly characterized final state, or can make a further transition.

In our language, this holds with or without types, if we declare states > / > /

F (for any F) and ⊥ / S / ⊥ (for any S) final, and assume that G, S, and F

satisfy the grammar for goals, goal stacks and failure continuations shown in this
lecture.

Prove the progress theorem.

9.10 References

[1] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[2] Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cam-
bridge, Massachusetts, 1992.

[3] Bertrand Russell. Letter to Frege. In J. van Heijenoort, editor, From
Frege to Gödel, pages 124–125. Harvard University Press, 1967. Letter
written in 1902.

LECTURE NOTES SEPTEMBER 26, 2006

L9.12 Types

LECTURE NOTES SEPTEMBER 26, 2006

15-819K: Logic Programming

Lecture 10

Polymorphism

Frank Pfenning

September 28, 2006

In this lecture we extend the system of simple types from the previous lec-
ture to encompass polymorphism. There are some technical pitfalls, and
some plausible systems do not satisfy type preservation. We discuss three
ways to restore type preservation.

10.1 Heterogeneous and Homogeneous Lists

Types such as natural numbers, be it in binary or in unary notation, are
easy to specify and use in the system from the previous lecture. Generic
data structures such as lists, on the other hand, present difficulties. Recall
the type predicate for lists:

list([]).

list([X|Xs]) :- list(Xs).

The difficulty is that for lists in general there is no restriction on X: it can
have arbitrary type. When we try to give the declarations

list : type.

[] : list.

’.’ : ?, list -> list.

we realize that there is nothing sensible we can put as the type of the first
argument of cons.1

Two solutions suggest themselves. One is to introduce a universal type
“any” and ensure that t : any for all terms t. This destroys the property of

1Recall that [X|Xs] is just alternate syntax for ’.’(X, Xs)

LECTURE NOTES SEPTEMBER 28, 2006

L10.2 Polymorphism

simple types that every well-typed term has a unique type and significantly
complicates the type system. Following this direction it seems almost in-
evitable that some types need to be carried at runtime. A second possibil-
ity is to introduce type variables and think of the type of constructors as
schematic in their free type variables.

list : type.

[] : list.

’.’ : A, list -> list.

We will pursue this idea in this lecture. Although it is also not without
problems, it is quite general and leads to a rich and expressive types sys-
tem.

Since the typing rules above are schematic, we get to choose a fresh
instance for A every time we use the cons constructor. This means the ele-
ments of a list can have arbitrarily different types (they are heterogeneous).

For certain programs it is important to know that the elements of a list
all have the same type. For example, we can sort a list of integers, but not
a list mixing integers, booleans, and other lists. This requires that list is
actually a type constructor: it takes a type as an argument and returns a
type. Specifically:

list : type -> type.

[] : list(A).

’.’ : A, list(A) -> list(A).

With these declarations only homogeneous lists will type-check: a term of
type list(A) will be a list all of whose elements are of type A.

10.2 Polymorphic Signatures

We now move to a formal specification of typing. We start with signatures,
which now have a more general form. We write α for type variables and
α for a sequences of type variables. As in the case of clauses and ordinary
variables, the official syntax quantifies over type variables in declarations.

Signature Σ ::= · empty signature
| Σ, a : type

n
→ type type constructor declaration

| Σ, f : ∀α.σ → τ function symbol declaration
| Σ, p : ∀α.σ → o predicate symbol declaration

Here, boldface “type
n

” stands for a sequence type , . . . , type of length
n. As usual, if a sequence to the left of the arrow is empty, we may omit

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.3

the arrow altogether. Similarly, we may omit the quantifier if there are no
type variables, and the argument to a type zero-ary types constructor a().
Moreover, function and predicate declarations should not contain any free
type variables.

The language of types is also more elaborate, but still does not contain
function types as first-class constructors.

Types τ ::= α | a(τ1, . . . , τn)

10.3 Polymorphic Typing for Terms

The only two rules in the system for simple types that are affected by poly-
morphism are those for function and predicate symbols. We account for
the schematic nature of function and predicate declarations by allowing a
substitution θ̂ for the type variables α that occur in the declaration. We
suppose a fixed signature Σ.

dom(θ̂) = α

f : ∀α.σ → τ ∈ Σ ∆ ` t : σθ̂

∆ ` f(t) : τ θ̂

We use the notation θ̂ to indicate a substitution of types for type variables
rather terms for term variables.

Looking ahead (or back) at the required property of type preservation,
one critical lemma is that unification produces a well-typed substitution.
Unfortunately, in the presence of polymorphic typing, this property fails!
You may want to spend a couple of minutes thinking about a possible coun-
terexample before reading on. One way to try to find one (and also a good
start on fixing the problem) is to attempt a proof and learn from its failure.

False Claim 10.1 If ∆ ` t : τ and ∆ ` s : τ and ∆ ` t
.
= s | θ then ∆ ` θ subst

and similarly for sequences of terms.

Proof attempt: We proceed by induction on the derivation D of the unifi-
cation judgment, applying inversion to the given typing judgments in each
case. We focus on the problematic one.

Case: D =

D′

∆ ` t
.
= s | θ

∆ ` f(t)
.
= f(s) | θ

.

LECTURE NOTES SEPTEMBER 28, 2006

L10.4 Polymorphism

We note that we could complete this case if we could appeal to the in-
duction hypothesis on D′, since this would yield the well-typedness
of θ. We can appeal to the induction hypothesis if we can show that t

and s have the same sequence of types. Let’s see what we can glean
from applying inversion to the giving typing derivations. First, we
note that there must be a unique type declaration for f in the signa-
ture, say

f : σ → τ ′ ∈ Σ for some σ and τ ′.

Now we write out the inversions on the given typing derivations,
using the uniqueness of the declaration for f .

∆ ` f(t) : τ Assumption

τ = τ ′θ̂1 and ∆ ` t : σθ̂1 for some θ̂1 By inversion

∆ ` f(s) : τ Assumption

τ = τ ′θ̂2 and ∆ ` s : σθ̂2 for some θ̂2 By inversion

At this point we would like to conclude

σθ̂1 = σθ̂2

because then t and s would have the same sequence of types and we
could finish this case by the induction hypothesis.

Unfortunately, this is not necessarily the case because all we know is

τ = τ ′θ̂1 = τ ′θ̂2.

From this we can only onclude that θ1 and θ2 agree on the type vari-
ables free in τ ′, but they could differ on variables that occur only in σ

but not in τ ′.

3

From this we can construct a counterexample. Consider heterogeneous
lists

nil : list

cons : ∀α.α, list→ list

Then
x:nat ` cons(x, nil) : list

x:nat ` cons(nil, nil) : list

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.5

and

x:nat ` cons(x, nil)
.
= cons(nil, nil) | (nil/x)

but the returned substitution (nil/x) is not well typed because x:nat and
nil:list.

Because unification does not return well-typed substitutions, the oper-
ational semantics in whichever form we presented does also not preserve
types. The design of the type system is flawed.

We can pursue two avenues to fix this problem: restricting the type
system or rewriting the operational semantics.

Type Restriction. In analyzing the failed proof above we can see that at
least this case would go through if we require for a declaration f : ∀α.σ →

τ that every type variable that occurs in σ also occurs in τ . Function sym-
bols of this form are called type preserving.2 When all function symbols are
type preserving, the falsely claimed property above actually does hold—
the critical case is the one we gave.

Requiring all function symbols to be type preserving rules out hetero-
geneous lists, and we need to apply techniques familiar from functional
programming to inject elements into a common type. I find this tolerable,
but many Prolog programmers would disagree.

Type Passing. We can also modify the operational semantics so that types
are passed and unified at run-time. Then we can use the types to prevent
the kind of failure of preservation that arose in the counterexample above.
Passing types violates the phase separation and therefore has some over-
head. On the other hand, it allows data structures such as heterogeneous
lists without additional coding. The language λProlog uses a type passing
approach, together with some optimizations to avoid unnecessary passing
of types. We return to this option below.

Before we can make a choice between the two, or resolve the apparent
conflict, we must consider the type preservation theorem to make sure we
understand all the issues.

2Function symbols are constructors, so this is not the same as type preservation in a
functional language. Because of this slightly unfortunate terminology this property has
also been called transparent.

LECTURE NOTES SEPTEMBER 28, 2006

L10.6 Polymorphism

10.4 Polymorphic Predicates

As it turns out, requiring all function symbols to be type preserving is insuf-
ficient to guarantee type preservation. The problem is presented by predi-
cate symbols, declared now as p : ∀α.σ → o. If we just unify ∆ ` p(t)

.
=

p(s), we run into the same problem as above because predicate symbols are
never type preserving unless they do not have any type variables at all.

Disallowing polymorphic predicates altogether would be too restric-
tive, because programs that manipulate generic data structures must be
polymorphic. For example, for homogeneous lists we have

append : list(A), list(A), list(A) -> o.

which is polymorphic in the type variable A.
Moreover, the program clauses themselves also need to be polymor-

phic. For example, in the first clause for append

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

the variable Ys should be of type list(A) for a type variable A.
Before we can solve our problem with type preservation, we must ac-

count for the presence of type variables in program clauses, which now
quantify not only over term variables, but also over type variables. The
general form is ∀α.∀x:σ. p(t) ← G where the type variables α contain all
free type variables in the clause. We will come back to the normal form
used in the free variables operational semantics below.

The meaning of universal quantification over types is specified via sub-
stitution in the focusing judgment.

Γ;D(τ/α) true ` P true

Γ;∀α.D true ` P true

This just states that an assumption that is schematic in a type variable α

can be instantiated to any type τ . Since logical deduction is ground, we
implicitly assume in the rule above that τ does not contain any free type
variables.

This forces a new typing rule for clauses, which in turn means we have
to slightly generalize contexts to permit declarations α type for type vari-
ables.

∆, α type ` A : o

∆ ` ∀α.A : o

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.7

To be complete and precise, we also need a judgment that types themselves
are well-formed (∆ ` τ type) and similarly for type substitutions (∆ `

θ̂ tsubst); they can be found in various figures at the end of these notes.

p : ∀α.σ → o ∈ Σ

dom(θ̂) = α

∆ ` θ̂ tsubst ∆ ` t : σθ̂

∆ ` p(t) : o

Now we reconsider how to solve the problem of polymorphic predi-
cates. Looking at the predicate append

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

for homogenous lists, we see that no run-time type error can actually arise.
This is because the heads of the clauses cover the most general case for
a goal. For example, Ys has type list(A) for an arbitrary type A. It can
therefore take on the type of the list in the goal. For example, with a goal

append([], [1,2,3], Zs).

with Zs : list(int), no problem arises because we instantiate the clause
to A = int and then use that instance.

On the other hand, if we added a clause

append([1], [], [1]).

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

which is certainly not logically incorrect albeit redundant, then a run-time
type error would occur if we called it with a goal such as

?- append([X], [], Zs), plus(X, s(z), s(s(z))).

where X : nat.
What is required is that each clause head for a predicate p is maximally

general or parametric with respect to the declaration of p. More precisely, we
say a clause

∀β.∀x:τ . p(t)← G with p : ∀α.σ → o ∈ Σ

is parametric if there is a type substitution θ̂ with dom(θ̂) = β with α type `

θ̂ tsubst such that
α type,x:τ θ̂ ` t : σ.

LECTURE NOTES SEPTEMBER 28, 2006

L10.8 Polymorphism

In other words, the types of the arguments t to p in the clause head must
match σ in their full generality, keeping all types α fixed.

The proof of type preservation in the presence of this restriction is tech-
nically somewhat involved3 so we will omit it here. In the next section we
will see an alternative approach for which type preservation is easy.

10.5 Polymorphic Residuation

When previously describing residuation, we actually were somewhat cav-
alier in the treatment of atomic programs (that is, clause heads).

p′(s) ` p(x) > p′(s)
.
= p(x)

Strictly speaking, the resulting equation is not well-formed because it re-
lates two atomic propositions rather than two terms. We can eliminate this
inaccuracy by introducing equality between term sequences as a new goal
proposition, writing is as t

.
= s in overloaded notation. Then we can split

the residuation above into two rules:

p(s) ` p(x) > s
.
= x

p 6= p′

p(s) ` p′(x) > ⊥

The new pair of rules removes equality between propositions. However,
the first rule now has the problem that if p is not maximally general, the
residuated equation s

.
= x may not be well-typed!

The idea now is to do some checking during residuation, so that it fails
when a clause head is not maximally general. Since residuation would
normally be done statically, as part of compilation of a logic program, we
discover programs that violate the condition at compile time, before the
program is executed. Following this idea requires passing in a context ∆.
to residuation so we can perform type-checking. The two rules above then
become

∆ ` x : σ ∆ ` s : σ

∆; p(s) ` p(x) > s
.
= x

p 6= p′

∆; p(s) ` p′(x) > ⊥

For the program fragment Dp defining p with

p : ∀α.σ → o

3As I am writing these notes, I do not have a complete and detailed proof in the present
context.

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.9

we initially invoke residuation with the most general atomic goal p(x) as in

α type,x:σ;Dp ` p(x) > Gp

leading to the residuated program clause

∀α.∀x:σ. p(x)← Gp.

Residuation is easily extended to handle universally quantified type
variables in programs: we just have to guess how to instantiate them so
that when reaching the head the arguments have the types σ.

∆ ` τ type ∆;D(τ/β) ` p(x) > G

∆;∀β.D ` p(x) > G

Note that this residuation never generates any residual existential quantifi-
cation over types. This means that the operational semantics should not
allow any free type variables at run-time. This makes sense from a prac-
tical perspective: even though programs are generic in the types of data
they can manipulate, when we execute programs they operate on concrete
data. Moreoever, since we do not actually carry the types around, their role
would be quite unclear. Nevertheless, an extension to residuate types that
cannot be guessed at compile-time is possible (see Exercise 10.1).

The operational semantics refers to the residuated program. Since it
contains no equations involving predicates, and we assume all function
symbols are type preserving, type preservation is now a relatively straight-
forward property. The rule for predicate invocation looks as follows:

(p : ∀α.σ → o)
(∆ ` t : σ(τ/α))
∀α.∀x:σ. p(x)← Gp ∆ ` Gp(τ/α)(t/x) / S / F

∆ ` p(t) / S / F

In this rule, formally, we determine a type substitution τ/α, but this is
only a technical device in order to make it easier to state and prove the
type preservation theorem. We have indicated this by parenthesizing the
extraneous premisses. During the actual operation of the abstract machine,
quantifiers are not annotated with types, and type substitutions are neither
computed nor applied.

Now type preservation follows in a pretty straightforward way. A crit-
ical lemma is parametricity over types4: if α type,∆ ` t : σ then ∆(τ/α) `

4This notion is related to, but not the same as the semantic notion of parametricity in
functional programming.

LECTURE NOTES SEPTEMBER 28, 2006

L10.10 Polymorphism

t : σ(τ/α) and similarly for proposition. Essentially, if we keep a type vari-
able fixed in a typing derivation, we can substitute an arbitrary type for
the variable and still get a proper derivation. This can be proven easily by
induction over the structure of the given typing derivation.

We also have that if ∆ ` D : o and ∆ ` p(x) : o for a program propo-
sition D and ∆;D ` p(x) > G then ∆ ` G : o. Of course, this theorem is
possible precisely because we check types in the case where D is atomic.

For reference, we recap some of the judgments and languages. We have
simplified equalities by using only equality of term sequences, taking the
case of single terms as a special case. Recall that G ⊃ D and D ← G are
synonyms.

Signatures Σ ::= · | Σ, a : type
n
→ type | Σ, f : ∀α.σ → τ

| Σ, p : ∀α.σ → o

Contexts ∆ ::= · | ∆, α type | ∆, x:τ
Types τ ::= a(τ) | α
Programs Γ ::= · | Γ,∀α.∀x:σ. p(x)← Gp

Clauses D ::= p(t) | D1 ∧D1 | > | G ⊃ D | ∀x:τ.D | ∀α.D

Goals G ::= p(t) | G1 ∧G2 | > | G1 ∨G2 | ⊥ | t
.
= s | ∃x:τ.G

Goal Stacks S ::= > | G ∧ S

Failure Conts F ::= ⊥ | (G ∧ S) ∨ F

Rules defining typing and well-formedness judgments on these expres-
sions are given at the end of these notes. Programs are in normal form
so that they can be used easily in a backtracking free-variable semantics.

Now we can state and prove the type preservation theorem in its poly-
morphic form.

Theorem 10.2 Assume a well-formed signature Σ, program Γ, and context ∆.
Further assume that all function symbols are type preserving. If ∆ ` G / S /

F state and (∆ ` G / S / F) ⇒ (∆′ ` G′ / S′ / F ′) then ∆′ ` G′ / S′ /

F ′ state .

Proof: By distinguishing cases on the transition relation, applying inver-
sion on the given derivations. In some cases, previously stated lemmas
such as the soundness of unification and preservation of types under well-
formed substitutions are required. 2

10.6 Parametric and Ad Hoc Polymorphism

The restrictions on function symbols (type preserving) and predicate defi-
nitions (parametricity) imply that no types are necessary during the execu-

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.11

tion of well-typed programs.

The condition that clause heads must be maximally general implies that
the programs behave parametrically in their type. The append predicate,
for example, behaves identically for lists of all types. This is also a char-
acteristic of parametric polymorphism in functional programming, so we
find the two conditions neatly relate the two paradigms.

On the other hand, the parametricity restriction can be somewhat un-
pleasant on occasion. For example, we may want a generic predicate print
that dispatches to different, more specialized predicates, based on the type
of the argument. This kind of predicate is not parametric and in its full gen-
erality would require a type passing interpretation. This is a form of ad hoc
polymorphism which is central in object-oriented languages.

We only very briefly sketch how existential types might be introduced to
permit a combination of parametric polymorphism with ad hoc polymor-
phism, the latter implemented with type passing.

For each function symbol, we shift the universal quantifiers that do not
appear in the result type into an existential quantifier over the arguments.
That is,

f : ∀α.σ → τ

is transformed into

f : ∀α1. (∃α2.σ)→ τ

where α = α1,α2 and α1 = FV (τ). By the latter condition, the declaration
can now be considered type preserving.

To make this work with the operational semantics we apply f not just
to terms, but also to the types corresponding to α2. For example, heteroge-
neous lists

list : type.

nil : list.

cons : A, list -> list.

are interpreted as

list type

nil : list

cons : (∃α.α, list)→ list

A source level term

cons(1, cons(z, nil))

LECTURE NOTES SEPTEMBER 28, 2006

L10.12 Polymorphism

would be represented as

cons(int; 1, cons(nat; z, nil))

where we use a semi-colon to separate type arguments from term argu-
ments. During unification, the type argument as well as the term argu-
ments must be unified to guarantee soundness.

For predicates, type parameters that are not treated parametrically must
be represented as existential quantifiers over the arguments, the parametric
ones remain universal. For example,

append([1], [], [1]).

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

for homogeneous lists is ad hoc polymorphic because of the first clause and
should be given type

append : (∃α. list(α), list(α), list(α))→ o

At least internally, but perhaps even externally, append now has one type
argument and three term arguments.

append(int; [1], [], [1]).

append(A; [], Ys, Ys).

append(A; [X|Xs], Ys, [X|Zs]) :- append(A; Xs, Ys, Zs).

Unification of the type arguments (either implicitly or explicitly) prevents
violation of type preservation, as can be seen from the earlier counterexam-
ple

?- append(nat; [X], [], Zs), plus(X, s(z), s(s(z))).

which no fails to match the first clause of append.

The extension of polymorphic typing by using type-passing existential
quantifiers is designed to have the nice property that if the program is para-
metric and function symbols are type-preserving, then no types are passed
at runtime. However, if function symbols or predicates are needed which
violate these restrictions, they can be added with some feasible and local
overhead.5

5At the point of this writing this is speculation—I have not seen, formally investigated,
or implemented such a system.

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.13

10.7 Historical Notes

The first proposal for parametrically polymorphic typing in Prolog was
made by Mycroft and O’Keefe [3] and was strongly influenced by the func-
tional language ML. Hanus later refined and extended this proposal [1].
Among other things, Hanus considers a type passing interpretation for
ad hoc polymorphic programs and typed unification. The modern dialect
λProlog [2] incorporates polymorphic types and its Teyjus implementation
contains several sophisticated optimizations to handle run-time types effi-
ciently [4].

10.8 Exercises

Exercise 10.1 Define an extension of residuation in the presence of polymorphism
that allows free type variable in the body of a clause.

Exercise 10.2 Write out the rules for typing, unification, operational semantics,
and sketch type preservation for a type-passing interpretation of existential types
as outlined in this lecture.

Exercise 10.3 Write a type-checker for polymorphic Prolog programs, following
the starter code and instructions available on the course website.

10.9 References

[1] Michael Hanus. Horn clause programs with polymorphic types: Se-
mantics and resolution. Theoretical Computer Science, 89:63–106, 1991.

[2] Dale Miller and Gopalan Nadathur. Higher-order logic programming.
In Ehud Shapiro, editor, Proceedings of the Third International Logic Pro-
gramming Conference, pages 448–462, London, June 1986.

[3] Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for
Prolog. Artificial Intelligence, 23(3):295–307, July 1984.

[4] Gopalan Nadathur and Xiaochu Qi. Optimizing the runtime pro-
cessing of types in a higher-order logic programming language. In
G. Suffcliff and A. Voronkov, editors, Proceedings of the 12th International
Conference on Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR’05), pages 110–125, Montego Bay, Jamaica, December 2005.
Springer LNAI 3835.

LECTURE NOTES SEPTEMBER 28, 2006

L10.14 Polymorphism

10.10 Appendix: Judgment Definitions

We collect the rules for various judgments here for reference. General as-
sumptions apply without being explicitly restated, such as the uniqueness
of declarations in signatures, contexts, and substitutions, or tacit renaming
of bound variables (both at the type and the term level). Also, many judg-
ment implicitly carry a signature or program which never changes, so we
elide them from the rules. If necessary, they are shown explicitly on the left
of the judgment, separated by a semi-colon from other hypotheses.

∆ ` x : σ ∆ ` s : σ

∆; p(s) ` p(x) > s
.
= x

p 6= p′

∆; p(s) ` p′(x) > ⊥

∆;D1 ` p(x) > G1 ∆;D2 ` p(x) > G2

∆;D1 ∧D2 ` p(x) > G1 ∨G2

∆;> ` p(x) > ⊥

∆;D ` p(x) > G1

∆;G ⊃ D ` p(x) > G1 ∧G

∆, y:τ ;D ` p(x) > G

∆;∀y:τ.D ` p(x) > ∃y:τ.G

∆ ` τ type ∆;D(τ/β) ` p(x) > G

∆;∀β.D ` p(x) > G

Figure 1: Residuation Judgment Σ;∆;D ` p(x) > G

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.15

∆ ` G1 / G2 ∧ S / F

∆ ` G1 ∧G2 / S / F

∆ ` G2 ∧ S / F

∆ ` > / G2 ∧ S / F ∆ ` > / > / F

∆ ` G1 / S / (G2 ∧ S) ∨ F

∆ ` G1 ∨G2 / S / F

∆ ` G2 / S′ / F

∆ ` ⊥ / S / (G2 ∧ S′) ∨ F

fails (no rule)

∆ ` ⊥ / S / ⊥

∆ ` t
.
= s | θ ∆ ` > / Sθ / F

∆ ` t
.
= s / S / F

there is no θ with
∆ ` t

.
= s | θ ∆ ` ⊥ / S / F

∆ ` t
.
= s / S / F

∆, x:τ ` G / S / F x /∈ dom(∆)

∆ ` ∃x:τ.G / S / F

(p : ∀α.σ → o)
(∆ ` t : σ(τ/α))
∀α.∀x:σ. p(x)← Gp ∈ Γ ∆ ` Gp(τ/α)(t/x) / S / F

∆ ` p(t) / S / F

Figure 2: Operational Semantics Judgment Σ;Γ;∆ ` G / S / F

LECTURE NOTES SEPTEMBER 28, 2006

L10.16 Polymorphism

Propositions Σ;∆ ` A : o

∆ ` A : o ∆ ` B : o

∆ ` A ∧B : o ∆ ` > : o

∆ ` A : o ∆ ` B : o

∆ ` A ∨B : o ∆ ` ⊥ : o

∆ ` A : o ∆ ` B : o

∆ ` A ⊃ B : o

∆ ` t : τ ∆ ` s : τ

∆ ` t
.
= s : o

Terms Σ;∆ ` t : τ, Σ;∆ ` t : τ

p : ∀α.σ → o ∈ Σ

dom(θ̂) = α

∆ ` θ̂ tsubst ∆ ` t : σθ̂

∆ ` p(t) : o

∆, x:τ ` A : o

∆ ` ∀x:τ.A : o

∆, x:τ ` A : o

∆ ` ∃x:τ.A : o

∆, α type ` A : o

∆ ` ∀α.A : o

f : ∀α.σ → τ ∈ Σ

dom(θ̂) = α

∆ ` θ̂ tsubst ∆ ` t : σθ̂

∆ ` f(t) : τ θ̂

x:τ ∈ ∆

∆ ` x : τ

∆ ` t : τ ∆ ` t : τ

∆ ` (t, t) : (τ, τ) ∆ ` (·) : (·)

Substitutions Σ;∆ ` θ subst

∆ ` (·) subst

∆ ` θ subst x:τ ∈ ∆ ∆ ` t : τ

∆ ` (θ, t/x) subst

Figure 3: Typing Judgments

LECTURE NOTES SEPTEMBER 28, 2006

Polymorphism L10.17

Types Σ;∆ ` τ type , Σ;∆ ` τ type
n

a : type
n
→ type ∈ Σ ∆ ` τ type

n

∆ ` a(τ) type

α type ∈ ∆

∆ ` α type

∆ ` (·) type0

∆ ` τ type ∆ ` τ type
n

∆ ` (τ, τ) type
n+1

Type Substitutions Σ;∆ ` θ̂ tsubst

∆ ` (·) tsubst

∆ ` θ̂ tsubst ∆ ` τ type

∆ ` (θ̂, τ/α) tsubst

Signatures Σ sig

(·) sig

Σ sig

(Σ, a : type
n
→ type) sig

Σ sig Σ;α type ` σ type Σ;α type ` τ type

(Σ, f : ∀α.σ → τ) sig

Σ sig Σ;α type ` σ type

(Σ, p : ∀α.σ → o) sig

Contexts Σ;∆ ctx

(·) ctx

∆ ctx

(∆, α type) ctx

∆ ctx ∆ ` τ type

(∆, x:τ) ctx

Programs Σ;Γ prog

(·) prog

Γ prog (p : ∀α.σ → o) ∈ Σ · ` ∀α.∀x:σ. p(x)← Gp : o

(Γ,∀α.∀x:σ. p(x)← Gp) prog

States Σ;Γ;∆ ` G / S / F state

Σ sig Γ prog ∆ ctx ∆ ` G : o ∆ ` S : o ∆ ` F : o

Σ;Γ;∆ ` G / S / F state

Figure 4: Well-Formedness Judgments

LECTURE NOTES SEPTEMBER 28, 2006

L10.18 Polymorphism

LECTURE NOTES SEPTEMBER 28, 2006

15-819K: Logic Programming

Lecture 11

Difference Lists

Frank Pfenning

October 3, 2006

In this lecture we look at programming techniques that are specific to logic
programming, or at least significantly more easily expressed and reasoned
about in logic programming than other paradigms. The first example is
difference lists, which we use for a queue data structure, list reversal, an
improvement of our earlier quicksort implementation, and a breadth-first
logic programming engine that can be seen as the core of a theorem prover.
We also introduce a program for peg solitaire as a prototype for state ex-
ploration. This will lead us towards considering imperative logic program-
ming.

11.1 Functional Queues

We would like to implement a queue with operations to enqueue, dequeue,
and test a queue for being empty. For illustration purposes we use a list of
instructions enq(x) and deq(x). Starting from an empty queue, we execute
the instructions in the order given in the list. When the instruction list is
empty we verify that the queue is also empty. Later we will use queues to
implement a breadth-first logic programming interpreter.

First, a naive, and very inefficient implementation, where a queue is
simply a list.

queue0(Is) :- q0(Is, []).

q0([enq(X)|Is], Q) :- append(Q, [X], Q2), q0(Is, Q2).

q0([deq(X)|Is], [X|Q]) :- q0(Is, Q).

q0([], []).

LECTURE NOTES OCTOBER 3, 2006

L11.2 Difference Lists

This is inefficient because of the repeaated calls to append which copy the
queue.

In a more efficient functional implementation we instead maintain two
lists, one the front of the list and one the back. We enqueue items on the
back and dequeue them from the front. When the front is empty, we reverse
the back and make it the new front.

queue1(Is) :- q1(Is, [], []).

q1([enq(X)|Is], F, B) :- q1(Is, F, [X|B]).

q1([deq(X)|Is], [X|F], B) :- q1(Is, F, B).

q1([deq(X)|Is], [], B) :- reverse(B,[X|F]), q1(Is,F,[]).

q1([], [], []).

Depending on the access patterns for queues, this can much more efficient
since the first since the cost of the list reversal can be amortized over the
enqueuing and dequeuing operations.

11.2 Queues as Difference Lists

The idea behind this implementation is that the a queue with elements
x1, . . . , xn is represented as a pair [x1, . . ., xn | B] \ B, where B is a
logic variable. Here \ is simply a constructor written in infix form to sug-
gest list difference because the actual queue of elements for F \ B is the list
F minus the tail B.

One may think of the variable B as a pointer to the end of the list, pro-
viding a means to add an element at the end in constant time (instead of
calling append as in the very first implementation). Here is a first imple-
mentation using this idea:

queue(Is) :- q(Is, B\B).

q([enq(X)|Is], F\[X|B]) :- q(Is, F\B).

q([deq(X)|Is], [X|F]\B) :- q(Is, F\B).

q([], []\[]).

We consider is line by line, in each case considering the invariant:

A queue x1, . . . , xn is represented by [x1, . . ., xn | B] \ B

for a logic variable B.

In the first clause

LECTURE NOTES OCTOBER 3, 2006

Difference Lists L11.3

queue(Is) :- q(Is, B\B).

we see that the empty queue is represented as B\B for a logic variable B,
which is an instance of the invariant for n = 0.

The second clause

q([enq(X)|Is], F\[X|B]) :- q(Is, F\B).

is trickier. A goal matching the head of this clause will have the form

?- q([enq(xn+1)|l], [x1, . . ., xn | B0] \ B0).

for a term xn+1, list l, terms x1, . . . , xn and variable B0. Unification will
instantiate

X = xn+1

Is = l

F = [x1, . . ., xn, xn+1 | B]

B0 = [xn+1 | B]

where B is a fresh logic variable. Now the recursive call is

?- q(l, [x1, . . ., xn, xn+1 | B1] \ B1).

satisfying our representation invariant.
The third clause

q([deq(X)|Is], [X|F]\B) :- q(Is, F\B).

looks straightforward, since we are just working on the front of the queue,
removing its first element. However, there is a tricky issue when the queue
is empty. In that case it has the form B0 \ B0 for some logic variable B0, so
it can actually unify with [X|F]. In that case, B0 = [X|F], so the recursive
call will be on q(l, F \ [X|F]) which not only violates our invariant, but
also unexpectedly allows us to remove an element from the empty queue!

The invariant will right itself once we enqueue another element that
matches X. In other words, we have constructed a “negative” queue, bor-
rowing against future elements that have not yet arrived. If this behavior
is undesirable, it can be fixed in two ways: we can either add a counter as a
third argument that tracks the number of elements in the queue, and then
verify that the counter is positive before dequeuing and element. Or we
can check if the queue is empty before dequeuing and fail explicitly in that
case.

Let us consider the last clause.

LECTURE NOTES OCTOBER 3, 2006

L11.4 Difference Lists

q([], []\[]).

This checks that the queue is empty by unifying it with []\[]. From the
invariant we can see that it succeeds exactly if the queue is empty (neither
positive nor negative, if borrowing is allowed).

When we started with the empty queue, we used the phrase B\B for a
logic variable B to represent the empty queue. Logically, this is equivalent
to checking unifiability with []\[], but operationally this does not work
because of the lack of occurs-check in Prolog. A non-empty queue such as
[x1|B0] \ B0 will incorrectly “unify” with B1\B1 with B1 being instanti-
ated to a circular term B1 = [x1|B1].

To complete this example, we show the version that prevents negative
queues by testing if the front is unifiable with [] before proceeding with a
dequeue operation.

queue(Is) :- q(Is, B\B).

q([enq(X)|Is], F\[X|B]) :- q(Is, F\B).

q([deq(X)|Is], F\B) :-

F = [] -> fail ; F = [X|F1], q(Is, F1\B).

q([], []\[]).

11.3 Other Uses of Difference Lists

In the queue example, it was important that the tail of the list is always
a logic variable. There are other uses of difference list where this is not
required. As a simple example consider reverse. In its naive formulation
it overuses append, as in the naive formulation of queues.

naive_reverse([X|Xs], Zs) :-

naive_reverse(Xs, Ys),

append(Ys, [X], Zs).

naive_reverse([], []).

To make this more efficient, we use a difference list as the second argu-
ment.

reverse(Xs, Ys) :- rev(Xs, Ys\[]).

rev([X|Xs], Ys\Zs) :- rev(Xs, Ys\[X|Zs]).

rev([], Ys\Ys).

LECTURE NOTES OCTOBER 3, 2006

Difference Lists L11.5

This time, the front of the difference list is a logic variable, to be filled in
when the input list is empty.

Even though this program is certainly correctly interpreted using list
difference, the use here corresponds straightforwardly to the idea of accu-
mulators in functional programming: In rev(Xs, Ys\Zs), Zs accumulates
the reverse list and eventually returns it in Ys.

Seasoned Prolog hackers will often break up an argument which is a
difference list into two top-level arguments for efficiency reasons. So the
reverse code above might actually look like

reverse(Xs, Ys) :- rev(Xs, Ys, []).

rev([X|Xs], Ys, Zs) :- rev(Xs, Ys, [X|Zs]).

rev([], Ys, Ys).

where the connection to difference lists is harder to recognize.

Another useful example of difference lists is in quicksort from Lecture
2, omitting here the code for partition/4. We construct two lists, Ys1 and
Ys2 and append them, copying Ys1 again.

quicksort([], []).

quicksort([X0|Xs], Ys) :-

partition(Xs, X0, Ls, Gs),

quicksort(Ls, Ys1),

quicksort(Gs, Ys2),

append(Ys1, [X0|Ys2], Ys).

Instead, we can use a difference list.

quicksort(Xs, Ys) :-

qsort(Xs, Ys\[]).

qsort([], Ys\Ys).

qsort([X0|Xs], Ys\Zs) :-

partition(Xs, X0, Ls, Gs),

qsort(Gs, Ys2\Zs),

qsort(Ls, Ys\[X0|Ys2]).

In this instance of difference lists, it may be helpful to think of

qsort(Xs, Y s\Zs)

LECTURE NOTES OCTOBER 3, 2006

L11.6 Difference Lists

as adding the sorted version of Xs to the front of Zs to obtain Y s. Then,
indeed, the result of subtracting Zs from Y s is the sorted version of Xs. In
order to see this most directly, we have swapped the two recursive calls to
qsort so that the tail of the difference list is always ground on invocation.

11.4 A Breadth-First Logic Programming Interpreter

With the ideas of queues outlined above, we can easily construct a breadth-
first interpreter for logic programs. Breadth-first search consumes a lot of
space, and it is very difficult for the programmer to obtain a good model
of program efficiency, so this is best thought of as a naive, first attempt at a
theorem prover that can find proofs even where the interpreter would loop.

The code can be found on the course website.1 It is obtained in a pretty
simple way from the depth-first interpreter, by replacing the failure contin-
uation F by a pair F1\F2, where F2 is always a logic variable that occurs at
the tail of F1. While F1 is not literally a list, it should be easy to see what
this means.

We show here only four interesting clauses. First three that are directly
concerned with the failure continuation.

% prove(G, Gamma, S, F1\F2, N, J)

% Gamma |- G / S / FQ, N is next free variable

% J = success or failure

...

prove(bot, _, _, bot\bot, _, J) :- !, J = failure.

prove(bot, Gamma, _, or(and(G2,S),F1)\F2, N, J) :-

prove(G2, Gamma, S, F1\F2, N, J).

prove(or(G1,G2), Gamma, S, F1\or(and(G2,S),F2), N, J) :-

prove(G1, Gamma, S, F1\F2, N, J).

The first clause here needs to commit so that the second clause cannot bor-
row against the future. It should match only if there is an element in the
queue.

In order to make this prover complete, we need to cede control imme-
diately after an atomic predicate is invoked. Otherwise predicates such as

diverge :- diverge ; true.

would still not terminate since alternatives, even though queued rather
than stacked, would never be considered. The code for this case looks like

1http://www.cs.cmu.edu/~fp/courses/lp/code/11-diff/meta.pl

LECTURE NOTES OCTOBER 3, 2006

Difference Lists L11.7

prove(app(Pred, Ts), Gamma, S, FQ, N, J) :-

...

prove(or(bot,GTheta), Gamma, S, FQ, N, J).

where GTheta will be the body of the definition of Pred, with arguments Ts
substituted for the argument variables. We assume here that the program is
already in residuated form, as is necessary for this semantics to be accurate.

In the next step we will queue up GTheta on the failure continuation and
then fail while trying to prove bot. Another alternative, suspended earlier,
will then be removed from the front of the queue and its proof attempted.2

11.5 State Exploration

We now switch to a different category of programs, broadly categorized
as exploring state. Game playing programs are in this class, as are puzzle
solving programs. One feature of logic programming we hope to exploit is
the backtracking nature of the operational semantics.

The example we use is peg solitaire. We are given a board of the form

s s s

s s s

s s s s s s s

s s s c s s s

s s s s s s s

s s s

s s s

where a solid circle s is a hole filled with a peg, while a c hollow circle
represents an empty hole. In each move, a peg can jump over an adjacent
one (right, down, left, or up), if the hole behind is empty. The peg that is
jumped over is removed from the board. For example, in the initial position
shown above there are four possible moves, all ending up in the center. If

2I have no proof that this really is complete—I would be interested in thoughts on the
issue.

LECTURE NOTES OCTOBER 3, 2006

L11.8 Difference Lists

we take the possible jump to the right, we would be in the position

s s s

s s s

s s s s s s s

s c c s s s s

s s s s s s s

s s s

s s s

The objective is continue jumps until only one peg is left over.
This puzzle has been extensively analyzed (see, for example, the Wiki-

pedia article on the subject). Our logic programming implementation will
to inefficient to solve the problem by brute force, but it is nonetheless an
illustrative example.3

We introduce a unique name for every place on the board by using a
integer coordinate address and concatenating the two digits starting with
00 at the lower-left hand corner which is unoccupied, proceeding to 66 in
the upper right-hand corner. Some place names are drawn in the following
diagram.

s s s

s s s

s s s s s s s

s s s c s s s

s s s s s s s

s s s

s s s

20 40

54

46

33

Now the current state of the board during the search for a solution is
represented by a list containing peg(ij) if there is a peg at location ij and

3This program was written by committee in real-time during lecture. Another some-
what more efficient version can be found with code that accompanies the lecture at
http://www.cs.cmu.edu/~fp/courses/lp/code/11-diff/.

LECTURE NOTES OCTOBER 3, 2006

Difference Lists L11.9

hole(ij) if the location ij is an empty hole. We have a prediate init(S0)

which holds for the initial state S0.

init([

peg(20),peg(30),peg(40),

peg(21),peg(31),peg(41),

peg(02),peg(12),peg(22),peg(32),peg(42),peg(52),peg(62),

peg(03),peg(13),peg(23),hole(33),peg(43),peg(53),peg(63),

peg(04),peg(14),peg(24),peg(34),peg(44),peg(54),peg(64),

peg(25),peg(35),peg(45),

peg(26),peg(36),peg(46)

]).

We also have a predicate between/3which holds between three places A, B,
and C whenever there is a possible jump to the right or up. This means that
if between(C,B,A) is true then a jump left or up from A to C is possible.
We show a few cases in the definition of between.

between(20,30,40).

between(20,21,22).

between(30,31,32).

between(40,41,42).

...

There are 38 such clauses altogether.
Next we have a predicate to flip a peg to a hole in a given state returning

the new state.

swap([peg(A)|State], peg(A), [hole(A)|State]).

swap([hole(A)|State], hole(A), [peg(A)|State]).

swap([Place|State1], Place0, [Place|State2]) :-

swap(State1, Place0, State2).

This fails if the requested place is not a peg or hole, respectively.
In order to make a single move, we find all candidate triples A, B, or C

using the between relation and then swap the two pegs and hole to be two
holes and a peg.

move1(State1,State4) :-

(between(A,B,C) ; between(C,B,A)),

swap(State1, peg(A), State2),

swap(State2, peg(B), State3),

swap(State3, hole(C), State4).

LECTURE NOTES OCTOBER 3, 2006

L11.10 Difference Lists

To see if we can make n moves from a given state we make one move
and then see if we can make n − 1 moves from the resulting state. If this
fails, we backtrack, trying another move.

moves(0, _).

moves(N, State1) :-

N > 0,

move1(State1, State2),

N1 is N-1,

moves(N1, State2).

Finally, to solve the puzzle we have to make n moves from the initial
state. To have a full solution, we would need n = 31, since we start with 32
pegs so making 31 moves will win.

solve(N) :-

init(State0),

moves(N, State0).

Since in practice we cannot solve the puzzle this way, it is interesting to
see how many sequences of moves of length n are possible from the initial
state. For example, there are 4 possible sequences of a single move and, 12
possible sequences of two moves, and 221072 sequences of seven moves.

There we encounter a difficulty, namely that we cannot maintain any
information about the number of solutions upon backtracking in pure Pro-
log (even though as you have seen in a homework assignments, it is easy
to count the number of solutions in the meta-interpreter).

This inability to preserve information is fundamental, so Prolog imple-
mentations offer several ways to circumvent it. One class of solutions is
represented by findall and related predicates which can collect the solu-
tions to a query in a list. A second possibility is to use assert and retract

to change the program destructively while it is running—a decidedly non-
logical solution. Final, modern Prolog implementations offer global vari-
ables that can be assigned to and incremented in a way that survives back-
tracking.

We briefly show the third solution in GNU Prolog. A global variable is
addressed by an atom, here count. We can assign to it with g_assign/2,
increment it with g_inc/1 and read its value with g_read/2. The idea is
to let a call to solve succeed, increment a global variable count, then fail
and backtrack into solve to find an another solution, etc., until there are no
further solutions.

LECTURE NOTES OCTOBER 3, 2006

Difference Lists L11.11

test(N) :-

g_assign(count, 0),

solve(N),

g_inc(count),

fail.

test(N) :-

g_read(count, K),

format("At ~p, ~p solutions\n", [N,K]).

This works, because the effect of incrementing count remains, even when
backtracking fails past it.

Although global variables are clearly non-logical, their operational se-
mantics is not so difficult to specify (see Exercise 11.4).

This example reveals imperative or potentially imperative operations
on several levels. In the next lecture we will explore one of them.

11.6 Historical Notes

Okasaki has given a perceptive analysis of purely functional queues [2].
According to Sterling and Shapiro [3], difference lists have been Prolog
folklore since the early days, with a first published description in a paper
by Clark and Tärnlund [1].

11.7 Exercises

Exercise 11.1 Reconsider the Dutch national flag problem introduced in Exercise
2.4 and give an efficient solution using difference lists.

Exercise 11.2 Think of another interesting application of difference lists or related
incomplete data structures and write and explain your implementation.

Exercise 11.3 Give a Prolog implementation of the following triangular version
of peg solitaire

s s s s s

s s s s

s c s

s s

s

LECTURE NOTES OCTOBER 3, 2006

L11.12 Difference Lists

where jumps can be made in 6 directions: east, northeast, northwest, west, south-
west, and southeast (but not directly north or south). Use your program to de-
termine the number of solutions (you may count symmetric ones), and in which
locations the only remaining peg may end up in. Also, what is the maximal number
of pegs that may be left on the board without any possible further moves?

Exercise 11.4 Give an extension of the operational semantics with goal stacks,
failure continuations, and explicit unification to model global variables (named by
constants) which can be assigned, incremented, decremented, and read. Glean their
intended meaning from the use in the test/1 predicate for peg solitaire.

You may assume that the values assigned to global variables in this manner are
ground and remain unaffected by backtracking.

11.8 References

[1] K. L. Clark and S.-A. Tärnlund. A first order theory of data and pro-
grams. In B. Gilchrist, editor, Proceedings of the IFIP Congress, pages
939–944, Toronto, Canada, 1977. North Holland.

[2] Chris Okasaki. Simple and efficient purely functional queues and de-
ques. Journal of Functional Programming, 5(4):583–592, October 1995.

[3] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
Cambridge, Massachusetts, 2nd edition edition, 1994.

LECTURE NOTES OCTOBER 3, 2006

15-819K: Logic Programming

Lecture 12

Linear Logic

Frank Pfenning

October 5, 2006

In this lecture we will rewrite the program for peg solitaire in a way that
treats state logically, rather than as an explicit data structure. In order to al-
low this we need to generalize the logic to handle state intrinsically, some-
thing provided by linear logic. We provide an introduction to linear logic as
a sequent calculus, which generalizes our previous way of specifying truth.
The sequent calculus is a bit too general to allow an immediate operational
interpretation to obtain a logic programming language, so we postpone this
step to the next lecture.

12.1 State-Passing Style

Let us reexamine the central part of the program for peg solitaire from the
last lecture. The first predicate moves passes state downward in the pro-
gram.

moves(0, _).

moves(N, State1) :-

N > 0,

move1(State1, State2),

N1 is N-1,

moves(N1, State2).

The second and third predicates, move1 and swap pass state from an input
argument (the first) to an output argument (the last).

LECTURE NOTES OCTOBER 5, 2006

L12.2 Linear Logic

move1(State1, State4) :-

(between(A,B,C) ; between(C,B,A)),

swap(State1, peg(A), State2),

swap(State2, peg(B), State3),

swap(State3, hole(C), State4).

swap([peg(A)|State], peg(A), [hole(A)|State]).

swap([hole(A)|State], hole(A), [peg(A)|State]).

swap([Place|State1], Place0, [Place|State2]) :-

swap(State1, Place0, State2).

This pattern of code is called state-passing or store-passing. State-passing
style is a common pattern in logic programs of a certain kind, specifically
state exploration as in puzzles and games or modeling concurrent or dis-
tributed systems.

We investigate in this and the next lecture how to eliminate explicit state
passing from such programs in favor of logical primitives.

In functional programming, the related store-passing style usually arises
in the opposite way: if we want to turn a functional program that uses mu-
table storage into a pure functional program we can pass the store around
as an explicit argument.

12.2 State-Dependent Truth

In our program, state is represented as a list of items peg(ij) and hole(ij)

for locations ij. Stepping back from this particular representation, it is easy
to interpret peg and hole as predicates, and peg(ij) and hole(ij) as propo-
sitions. For example, we say the proposition peg(ij) is true if there is a peg
in location ij on the board.

What makes this somewhat unusual, from the perspective of the logic
we have considered so far, is that the notion of truth depends on the state.
In some states, peg(ij) is true, in some it is false. In fact, the state of the
board is completely characterized by the peg and hole propositions.

In mathematical logic, truth is normally invariant and does depend on
state. This is because the mathematical objects we deal with, such as natu-
ral numbers, are themselved invariant and considered universal. In philo-
sophical logic, however, the concept of truth depending on the state of the
world is central and has been investigated under the name modal logic, of
which temporal logic is a particular branch. In these logics truth explicitly
depends on the state of the world, and the separate concept of necessary

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.3

truth captures those properties that are state invariant. However, neither
modal nor temporal logic is particularly appropriate for our problem do-
main. As an example, let us consider how we would specify a legal state
transition, using the next-time operator ©. We might write

between(A,B,C) ∧ peg(A) ∧ peg(B) ∧ hole(C)
⊃ ©(hole(A) ∧ hole(B) ∧ hole(C)).

Unfortunately, unless we specify something else, the only thing we know
about the next state is hole(A) ∧ hole(B) ∧ hole(C). What we would really
like to say is that all other propositions regarding locations besides A, B,
and C remain unchanged.

This kind of circumscription is awkward, defeating the purpose of ob-
taining a higher-level and more elegant formulation of our example and
similar state-passing code. Moreoever, when we add more predicates then
the move specification must also change to carry these over unchanged. In
artificial intelligence this is called the frame problem. In the next section we
show an elegant and completely logical solution to this problem.

12.3 Linear Logic

Linear logic has been described as a logic of state or a resource-aware logic.1

Formally, it arises from complementing the usual notion of logical assump-
tion with so-called linear assumptions or linear hypotheses. Unlike traditional
assumptions which may be used many times in a proof, linear assumptions
must be used exactly once during a proof. Linear assumptions then become
(consumable) resources in the course of a proof.

This generalization of the usual mathematical standpoint may seem
slight, but as we will see it is quite expressive. We write

A1 res , . . . , An res `̀ C true

for a linear hypothetical judgment with resources A1, . . . , An and goal C .
If we can prove this, it means that we can achieve that C is true, given re-
sources A1 through An. Here, all Ai and C are propositions.2 The version
of linear logic defined by this judgment is called intuitionistic linear logic,

1The term linear is connected to its use in algebra, but the connection is not easy to
explain. For this lecture just think of “linear” as denoting “must be used exactly once”.

2In the end it will turn out that A res and A true are interchangeable in that we can go
from each one to the other. At this point, however, we do not know this yet, so the judgment
we make about our resources is not that they are true, but that they are given resources.

LECTURE NOTES OCTOBER 5, 2006

L12.4 Linear Logic

sometimes contrasted with classical linear logic in which the sequent calcu-
lus has multiple conclusions. While it is possible to develop classical linear
logic programming it is more difficult to understand and use.

Hidden in the judgment are other assumptions, usually abbreviated as
Γ, which can be used arbitrarily often (including not at all), and are there-
fore called the unrestricted assumptions. If we need to make them explicit in
a rule we will write

Γ;∆ `̀ C true

where ∆ abbreviates the resources. As in our development so far, unre-
stricted assumption are fixed and are carried through from every conclu-
sion to all premisses. Eventually, we will want to generalize this, but not
quite yet.

The first rule of linear logic is that if we have a resource P we can
achieve goal P , where P is an atomic proposition. It will be a consequence
of our definitions that this will be true for arbitrary propositions A, but we
need it as a rule only for the atomic case, where the structure of the propo-
sitions can not be broken down further.

P res `̀ P true
id

We call this the identity rule, it is also sometimes called the init rule, and the
sequent P `̀ P is called an initial sequent.

12.4 Connectives of Linear Logic

One of the curious phenomena of linear logic is that the ordinary connec-
tives multiply. This is because the presence of linear assumptions allows
us to make distinctions we ordinarily could not. The first example of this
kind is conjunction. It turns out that linear logic possesses two forms of
conjunction.

Simultaneous Conjunction (A ⊗ B). A simultaneous conjunction A ⊗ B

is true if we can achieve both A and B in the same state. This means we
have to subdivide our resources, devoting some of them to achieve A and
the others to achieve B.

∆ = (∆A,∆B) ∆A `̀ A ∆B `̀ B

∆ `̀ A ⊗ B
⊗R

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.5

The order of linear assumptions is irrelevant, so in ∆ = (∆A,∆B) the
comma denotes the multi-set union. In other words, every occurrence of
a proposition in ∆ will end up in exactly one of ∆A and ∆B.

If we name the initial state of peg solitaire ∆0, then we have ∆0 `̀

peg(33) ⊗ hole(03) ⊗ . . . for some “. . .” because we can achieve a state with
a peg at location 33 and hole at location 03. On the other hand, we cannot
prove ∆0 `̀ peg(33) ⊗ hole(33) ⊗ . . . because we cannot have a peg and an
empty hole at location 33 in the same state. We will make the ellipsis “. . .”
precise below as consumptive truth >.

In a linear sequent calculus, the right rules shows when we can con-
clude a proposition. The left rule shows how we can use a resource. In this
case, the resource A ⊗ B means that we have A and B simultaneously, so
the left rule reads

∆, A res , B res `̀ C true

∆, A ⊗ B res `̀ C true
⊗L.

In comparison to the focusing judgment we used to explain the logical se-
mantics of pure Prolog programs, the left rules are not restricted to con-
tinuously decompose a single proposition until an atomic form is reached.
Instead, various applicable left rules that operate on different assumptions
can be freely interleaved. We consider the restriction to focusing in the next
lecture.

Alternative Conjunction (A & B). An alternative conjunction is true if
we can achieve both conjuncts, separately, with the current resources. This
means if we have a linear assumption A & B we have to make a choice:
either we use A or we use B, but we cannot use them both.

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

∆, A res `̀ C true

∆, A & B res `̀ C true
&L1

∆, B res `̀ C true

∆, A & B res `̀ C true
&L2

It looks like the right rule duplicates the assumptions, but this does not
violate linearity because in a use of the assumption A & B res we have to
commit to one or the other.

Returning to the solitaire example, we have ∆0 `̀ peg(33)⊗hole(03)⊗. . .

and we also have ∆0 `̀ hole(33) ⊗ hole(03) ⊗ . . . because we can certainly
reach states with these properties. However, we cannot reach a single state
with both of these, because the two properties of location 33 clash. If we

LECTURE NOTES OCTOBER 5, 2006

L12.6 Linear Logic

want to express that both are reachable, we can form their alternative con-
junction

∆0 `̀ (peg(33) ⊗ hole(03) ⊗ . . .) & (hole(33) ⊗ hole(03) . . .).

Consumptive Truth (>). We have seen two forms of conjunction, which
are distinguished because of their resource behavior. There are also two
truth constants, which correspond to zero-ary conjunctions. The first is
consumptive truth >. A proof of it consumes all current resources. As such
we can extract no information from its presence as an assumption.

∆ `̀ > true
>R no >L rule

∆,> res `̀ C true

Consumptive truth is important in applications where there is an as-
pect of the state we do not care about, because of the stipulation of linear
logic that every linear assumption must be used exactly once. In the ex-
amples above so far we cared about only two locations, 33 and 03. The
state will have a linear assumption for every location, which means we can
not prove, for example, ∆0 `̀ peg(33) ⊗ hole(03). However, we can prove
∆0 `̀ peg(33) ⊗ hole(03) ⊗ >, because the consumptive truth matches the
remaining state.

Consumptive truth is the unit of alternative conjunction in that A & >

is equivalent to A.

Empty Truth (1). The other form of truth holds only if there are no re-
sources. If we have this as a linear hypothesis we can transform it into the
empty set of resources.

∆ = (·)

∆ `̀ 1 true
1R

∆ `̀ C true

∆,1 res `̀ C true
1L

Empty truth can be useful to dispose explicitly of specific resources.

Linear Implication (A(B). A linear implication A(B is true if we can
achieve B given resource A.

∆, A res `̀ B true

∆ `̀ A (B true
(R

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.7

Conversely, if we have A (B as a resource, it means that we could trans-
form the resource A into the resource B. We capture this in the following
left rule:

∆ = (∆A,∆B) ∆A `̀ A true ∆B, B res `̀ C true

∆, A (B res `̀ C true
(L.

An assumption A (B therefore represents a means to transition from a
state with A to a state with B.

Unrestricted Assumptions Γ. The left rule for linear implication points at
a problem: the linear implication is itself linear and therefore consumed in
the application of that rule. If we want to specify via a linear logic program
how state may change, we will need to reuse the clauses over and over
again. This can be accomplished by a copy rule which takes an unrestricted
assumption and makes a linear copy of it. It is actually very much like the
focusing rule in an earlier system.

A ures ∈ Γ Γ;∆, A res `̀ C true

Γ;∆ `̀ C true
copy

We label the unrestricted assumptions as unrestricted resources, A ures . In
the logic programming interpretation, the whole program will end up in Γ
as unrestricted assumptions, since the program clauses can be used arbi-
trarily often during a computation.

Resource Independence (!A). The proposition !A is true if we can prove
A without using any resources. This means we can produce as many copies
of A as we need (since it costs nothing) and a linear resource !A licenses us
to make the unrestricted assumption A.

Γ; · `̀ A true

Γ; · `̀ !A true
!R

(Γ, A ures);∆ `̀ C true

Γ;∆, !A res `̀ C true
!L

Disjunction (A ⊕ B). The familiar conjunction from logic was split into
two connectives in linear logic: the simultaneous and the alternative con-
junction. Disjunction does not split the same way unless we introduce an
explicit judgment for falsehood (which we will not pursue). The goal A⊕B

can be achieved if we can achieve either A or B.

∆ `̀ A true

∆ `̀ A ⊕ B true
⊕R1

∆ `̀ B true

∆ `̀ A ⊕ B true
⊕R2

LECTURE NOTES OCTOBER 5, 2006

L12.8 Linear Logic

Conversely, if we are given A ⊕ B as a resource, we do not know which
of the two is true, so we have to account for both eventualities. Our proof
splits into cases, and we have to show that we can achieve our goal in either
case.

∆, A res `̀ C true ∆, B res `̀ C true

∆, A ⊕ B res `̀ C true
⊕L

Again, it might appear as if linearity is violated due to the duplication of
∆ and even C . However, only one of A or B will be true, so only one
part of the plan represented by the two premisses really applies, preserving
linearity.

Falsehood (0). There is no way to prove falsehood 0, so there is no right
rule for it. On the other hand, if we have 0 as an assumption we know we
are really in an impossible state so we are permitted to succeed.

no 0R rule
∆ `̀ 0 true ∆,0 res `̀ C true

0L

We can also formally think of falsehood as a disjunction between zero al-
ternatives and arrive at the same rule.

12.5 Resource Management

The connectives of linear logic are generally classified into multiplicative,
additive, and exponential.3

The multiplicative connectives, when their rules are read from conclu-
sion to the premisses, split their resources between the premisses. The con-
nectives ⊗, 1, and (have this flavor.

The additive connectives, when their rules are read from conclusion to
premisses, propagate their resources to all premisses. The connectives &,
>, ⊕, and 0 have this flavor.

The exponential connectives mediate the boundary between linear and
non-linear reasoning. The connective ! has this flavor.

During proof search (and therefore in the logic programming setting), a
significant question is how to handle the resources. It is clearly impractical,
for example, in the rule

∆ = (∆A,∆B) ∆A `̀ A true ∆B `̀ B true

∆ `̀ A ⊗ B true
⊗R

3Again, we will not try to explain the mathematical origins of this terminology.

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.9

to simply enumerate all possibilities and try to prove A and B in each com-
bination until one is found that works for both.

Instead, we pass in all resources ∆ into the first subgoal A and keep
track which resources are consumed. We then pass the remaining ones to
the proof of B. Of course, if B fails we may have to find another proof of
A which consumes a different set of resources and then retry B, and so on.
In the logic programming setting this is certainly an issue the programmer
has to be aware of, just as the programmer has to know which subgoal is
solved first, or which clause is tried first.

We will return to this question in the next lecture where we will make
resource-passing explicit in the operational semantics.

12.6 Peg Solitaire, Linearly

We now return to the peg solitaire example. We coule like to rewrite the
moves predicate from a state-passing moves(n,s) to just moves(n), where
the state s is actually encoded in the linear context ∆. That is, we consider
the sitation

∆ `̀ moves(n)

where ∆ contains a linear assumption peg(ij) when there is a peg in loca-
tion ij and hole(ij) if there is an empty hole in location ij.

The first clause,

moves(0, _).

is translated to

moves(0) ◦− >.

where ◦− is reverse linear implication. The > here is necessary to consume
the state (which, in this case, we don’t care about).

The second clause for moves

moves(N, State1) :-

N > 0,

move1(State1, State2),

N1 is N-1,

moves(N1, State2).

as well as the auxiliary predicates move1 and swap are replaced by just one
clause in the definition of moves.

LECTURE NOTES OCTOBER 5, 2006

L12.10 Linear Logic

moves(N) ◦−

N > 0 ⊗ N1 is N-1 ⊗

(between(A,B,C) ⊕ between(C,B,A)) ⊗

peg(A) ⊗ peg(B) ⊗ hole(C) ⊗

(hole(A) ⊗ hole(B) ⊗ peg(C) (moves(N1)).

Operationally, we first compute n−1 and then find a triple A, B, C such that
B is between A and C . These operations are state independent, although
the clause does not indicate that.

At this point we determine if there are pegs at A and B and a hole at
C . If this is not the case, we fail and backtrack; if it is we remove these
three assumptions from the linear context (they are consumed!) and as-
sume instead hole(A), hole(B), and peg(C) before calling moves recursively
with n − 1. At this point this is the only outstanding subgoal, and the state
has changed by jumping A over B into C , as specified.

Observe how linearity and the intrinsic handling of state let’s us replace
a lot of code for state management with one short clause.

12.7 Historical Notes

Linear logic in a slightly different form than we present here is due to Gi-
rard [2]. He insisted on a classical negation in his formulation, which can
get in the way of an elegant logic programming formulation. The judg-
mental presentation we use here was developed for several courses on Lin-
ear Logic [3] at CMU. Some additional connectives, and some interesting
connections between the two formulations in linear logic are developed by
Chang, Chaudhuri and Pfenning [1]. We’ll provide some references on lin-
ear logic programming in the next lecture.

12.8 Exercises

Exercise 12.1 Prove that A res `̀ A true for any proposition A.

Exercise 12.2 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. A & (B ⊕ C) `̀ (A & B) ⊕ (A & C)

ii. A ⊗ (B ⊕ C) `̀ (A ⊗ B) ⊕ (A ⊗ C)

iii. A ⊕ (B & C) `̀ (A ⊕ B) & (A ⊕ C)

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.11

iv. A ⊕ (B ⊗ C) `̀ (A ⊕ B) ⊗ (A ⊕ C)

Exercise 12.3 Repeat Exercise 12.2 by checking the reverse linear entailments.

Exercise 12.4 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. A ((B (C) `̀ (A ⊗ B) (C

ii. (A ⊗ B) (C `̀ A ((B (C)

iii. A ((B & C) `̀ (A (B) & (A (C)

iv. (A (B) & (A (C) `̀ A ((B & C)

v. (A ⊕ B) (C `̀ (A (C) & (A (C)

vi. (A (C) & (A (C) `̀ (A ⊕ B) (C

Exercise 12.5 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. C `̀ 1 (C

ii. 1 (C `̀ C

iii. A (> `̀ >

iv. > `̀ A (>

v. 0 (C `̀ >

vi. > `̀ 0 (C

Exercise 12.6 For each of the following purely linear entailments, give a proof
that they hold or demonstrate that they do not hold because there is no deduction
in our system. You do not need to prove formally that no deduction exists.

i. !(A ⊗ B) `̀ !A ⊗ !B

ii. !A ⊗ !B `̀ !(A ⊗ B)

iii. !(A & B) `̀ !A ⊗ !B

LECTURE NOTES OCTOBER 5, 2006

L12.12 Linear Logic

iv. !A ⊗ !B `̀ !(A & B)

v. !> `̀ 1

vi. 1 `̀ !>

vii. !1 `̀ >

viii. > `̀ !1

ix. !!A `̀ !A

x. !A `̀ !!A

12.9 References

[1] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A
judgmental analysis of linear logic. Technical Report CMU-CS-03-131R,
Carnegie Mellon University, December 2003.

[2] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[3] Frank Pfenning. Linear logic. Lecture Notes for a course at Carnegie
Mellon University, 1995. Revised 1998, 2001.

12.10 Appendix: Summary of Intuitionistic Linear Logic

In the rules below, we show the unrestricted assumptions Γ only where
affected by the rule. In all other rules it is propagated unchanged from the
conclusion to all the premisses. Also recall that the order of hypotheses is
irrelevant, and ∆A,∆B stands for the multiset union of two collections of
linear assumptions.

LECTURE NOTES OCTOBER 5, 2006

Linear Logic L12.13

Judgmental Rules

P res `̀ P true
id

A ures ∈ Γ Γ;∆, A res `̀ C true

Γ;∆ `̀ C true
copy

Multiplicative Connectives

∆A `̀ A ∆B `̀ B

∆A,∆B `̀ A ⊗ B
⊗R

∆, A res , B res `̀ C true

∆, A ⊗ B res `̀ C true
⊗L

· `̀ 1 true
1R

∆ `̀ C true

∆,1 res `̀ C true
1L

∆, A res `̀ B true

∆ `̀ A (B true
(R

∆A `̀ A true ∆B, B res `̀ C true

∆A,∆B , A (B res `̀ C true
(L

Additive Connectives

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

∆, A res `̀ C true

∆, A & B res `̀ C true
&L1

∆, B res `̀ C true

∆, A & B res `̀ C true
&L2

∆ `̀ > true
>R

no >L rule

∆ `̀ A true

∆ `̀ A ⊕ B true
⊕R1

∆ `̀ B true

∆ `̀ A ⊕ B true
⊕R2

∆, A res `̀ C true ∆, B res `̀ C true

∆, A ⊕ B res `̀ C true
⊕L

no 0R rule ∆,0 res `̀ C true
0L

Exponential Connective

Γ; · `̀ A true

Γ; · `̀ !A true
!R

(Γ, A ures);∆ `̀ C true

Γ;∆, !A res `̀ C true
!L

Figure 1: Intuitionistic Linear Logic

LECTURE NOTES OCTOBER 5, 2006

L12.14 Linear Logic

LECTURE NOTES OCTOBER 5, 2006

15-819K: Logic Programming

Lecture 13

Abstract Logic Programming

Frank Pfenning

October 10, 2006

In this lecture we discuss general criteria to judge whether a logic or a frag-
ment of it can be considered a logic programming language. Taking such
criteria as absolute is counterproductive, but they might nonetheless pro-
vide some useful insight in the design of richer languages. Three criteria
emerge: the first two characterize the relationship to logic in that the lan-
guage should be sound and (non-deterministically) complete, allowing us
to interpret both success and finite failure. The third is operational: we
would like to be able to interpret connectives in goals as search instruc-
tions, giving them a predictable operational semantics.

13.1 Logic and Logic Programming

For a language to claim to be a logic programming language, the first cri-
terion seems to be soundness with respect to the logical interpretation of
the program. I consider this non-negotiable: when the interpreter claims
something is true, it should be true. Otherwise, it may be a programming
language, but the connection to logic has been lost. Prolog, unfortunately,
is unsound in this respect, due to the lack of occurs-check and the incorrect
treatment of disequality. We either have to hope or verify that these features
of Prolog did not interfere with the correctness of the answer. Other non-
logical features such as meta-call, cut, or input and output are borderline
with respect to this criterion: since these do not have a logical interpreta-
tion, it is difficult to assess soundness of such programs, except by reference
to an operational semantics.

The second criterion is non-deterministic completeness. This means
that if search fails finitely, no proof can exist. This does not seem quite

LECTURE NOTES OCTOBER 10, 2006

L13.2 Abstract Logic Programming

as fundamental, since we should be mostly interested in obtaining proofs
when they exist, but from an abstract perspective it is certainly desirable.
Again, this fails for full Prolog, but is satisfied by pure Prolog even with a
depth-first interpreter.

Summary: if we would like to abstractly classify logics or logical frag-
ments as suitable basis for logic programming languages, we would expect
at least soundness and non-deterministic completeness so we can correctly
interpret success and failure of goals.

13.2 Logic Programming as Goal-Directed Search

Soundness and completeness (in some form) establish a connection to logic,
but by themselves they are clearly insufficient from a programming per-
spective. For example, a general purpose theorem prover for a logic is
sound and complete, and yet not by itself useful for programming. We
would like to ensure, for example, that our implementation of quicksort
really is an implementation of quicksort, and similarly for mergesort. The
programmer should be able to predict and control operational behavior
well enough to cast algorithms into correct implementations.

As we have seen in the case of Prolog, if the language of goals is suffi-
ciently rich, we can transform all the clauses defining a predicate into the
form ∀x. p(x) ← G through a process of residuation. Searching for a proof
of a goal p(t) then becomes a procedure call, solving instead G(t/x), which
is another goal. In that way, all computational mechanisms are concen-
trated on the interpretation of goals. Logic programming, as conceived so
far, is goal-directed search. Elevating these observations to a design princi-
ple we postulate:

An abstract logic programming language is defined by a subset
of the propositions in a logic together with an operational semantics
via proof search on that subset. The operational semantics should be
sound, non-deterministically complete, and goal-directed.

But what exactly does goal-directed search mean? If we consider a se-
quent . . . `̀ G true where “. . .” collects all hypotheses (linear, unrestricted,
and whatever judgments may arise in other logics), then search is goal-
directed if we can always break down the structure of the goal G first before
considering the hypotheses, including the program. This leads us to the
definition of asynchronous connectives.

LECTURE NOTES OCTOBER 10, 2006

Abstract Logic Programming L13.3

13.3 Asynchronous Connectives

A logial constant or connective is asynchronous if its right rule can always
be applied eagerly without loosing completeness. For example, A & B is
asynchronous, because the rule

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

can always be used for a conjunctive goal A & B, rather than first applying
a left rule to an assumption ∆ or the using a clause in the program Γ. This
intuitively coincides with our reading of conjunction as a search instruc-
tions: to search for a proof of A & B, first find a proof of A and then of B.
This does not talk about possibly having to decompose the program. The
property of being asynchronous turns out to be relatively easy to prove.
For example, given ∆ `̀ A & B true , we can prove that ∆ `̀ A true and
∆ `̀ B true by induction on the structure of the given derivation.

On the other hand, the disjunction A⊕B (which corresponds to A ∨B

in ordinary logic programming) is not asynchronous. As a countexample,
consider

C,C ((B ⊕A) `̀ A⊕B.

We can use neither the ⊕R1 nor the ⊕R2 rule, because neither

C,C ((B ⊕A) `̀ A

nor
C,C ((B ⊕A) `̀ B

are provable. Instead we can prove it as follows in the sequent calculus:

C `̀ C
id

B `̀ B
id

B `̀ A⊕B
⊕R2

A `̀ A
id

A `̀ A⊕B
⊕R1

B ⊕A `̀ A⊕B
⊕L

C,C ((B ⊕A) `̀ A⊕B
(L.

Observe that we took two steps on the left ((L and ⊕L) before decompos-
ing the right.

This counterexample shows that we could not decompose A⊕B eagerly
in goal-directed search, unless we are willing to sacrifice completeness. But
what, then, would the program C,C ((B ⊕A) mean?

LECTURE NOTES OCTOBER 10, 2006

L13.4 Abstract Logic Programming

We have already seen that disjunction is useful in Prolog programs, and
the same is true for linear logic programs, so this would seem unfortunate.
Before we rescue disjunction, let us analyze which connectives are asyn-
chronous.

We postpone the proofs that the asynchronous connectives are indeed
asynchronous, and just give counterexamples for those that are not asyn-
chronous.

C,C ((B ⊗A) `̀ A⊗B

C,C (1 `̀ 1

C,C ((B ⊕A) `̀ A⊕B

C,C (0 `̀ 0

C,C (!A `̀ !A

In each case we have to apply two left rules first, before any right rule can
be applied.

This leaves A(B, A&B, and> as asynchronous. Atomic propositions
have a somewhat special status in that we cannot decompose them, but we
have to switch to the left-hand side and focus on an assumption (which
models procedure call).

We have not discussed the rules for linear quantifiers (see below) but it
turns out that ∀x.A is asynchronous, while ∃x.A is not asynchronous.

13.4 Asynchronous Connectives vs. Invertibility of Rules

We call an inference rules invertible if the premisses are provable whenever
the conclusion is. It is tempting to think that a connective is asynchronous
if and only if its right rule is invertible. Not so. Please consider the question
and see a counterexample at the end of the lecture notes only in despara-
tion.

13.5 Unrestricted Implication

The analysis so far would suggest that the fragment of our logic has the
form

A ::= P | A1 (A2 | A1 & A2 | > | ∀x.A

However, this is insufficient, because it is purely linear. Usually we inte-
grate non-linear reasoning into linear logic using the “of course” operator
‘!’, but this is not asynchronous. Instead we can use ordinary implication
to complete the picture. The proposition A ⊃ B is true if assuming A as an

LECTURE NOTES OCTOBER 10, 2006

Abstract Logic Programming L13.5

unrestricted resource we can prove B.

Γ, A ures ;∆ `̀ B true

Γ;∆ `̀ A ⊃ B true
⊃R

Γ; · `̀ A true Γ;∆ `̀ C true

Γ;∆, A ⊃ B res `̀ C true
⊃L

In the left rule for implication, we cannot use any linear resources to prove
A, because A may be used in an unrestricted way when proving B. We
would need those resources potentially many times in the proof of B, vio-
lating linearity of the overall system.

The implication A ⊃ B is equivalent to (!A)(B (see Exercise 13.1), but
they have different proof theoretic properties since !A is not asynchronous.

13.6 Focusing and Synchronous Connectives

If all goal connectives are asynchronous, then we will hit eventually hit
an atomic predicate without even looking at the program. What happens
then? Recall from Lecture 8 that we now focus on a particular program
clause and decompose this in a focusing phase. In the setting here this just
means that the left rules are applied in sequence to the proposition in focus
until an atomic formula is reached, and this formula then must match the
conclusion.

In general, we call a connective synchronous if we can continue to fo-
cus on its components when it is in focus without losing completeness.
Note that in logic programming we focus on assumptions (that is, program
clauses or part of the state), so the status of a connective as synchronous
or asynchronous has be considered separately depending on whether it oc-
curs as a goal (on the right-hand side) or as an assumption (on the left-hand
side). A remarkable fact is that all the connectives that were asynchronous
as goals are synchronous as assumptions.

We now write ∆;A � P for a focus on A where we just wrote ∆;A `
P earlier, to avoid potential confusion with other hypothetical judgment
forms.

Unlike the decomposition of asynchronous connectives (which is com-
pletely mechanical), the decomposition of propositions in focus in the syn-
chronous phase of search involves choices. For example the pair of rules

∆;A1 res � P true

∆;A1 ∧A2 res � P true
&L1

∆;A2 res � P true

∆;A1 ∧A2 res � P true
&L2

requires a choice between A1 and A2 in the focusing phase of search, and
similarly for other connectives.

LECTURE NOTES OCTOBER 10, 2006

L13.6 Abstract Logic Programming

To restate the focusing property again: it allows us to continue to make
choices on the proposition in focus, without reconsidering other assump-
tions, until we reach an atomic proposition. If that matches the conclusion
that branch of the proof succeeds, otherwise it fails.

In the next lecture we will get a hint on how to prove this, although we
will not do this in full detail.

We close this section by giving the focusing rules for the asynchronous
fragment of linear logic, which is at the heart of our logic programming lan-
guage. The rules can be found in Figure 1. Unfortunately our motivating
example from the earlier lecture does not fall into this fragment. For exam-
ple, we used both simultaneous conjunction A ⊗ B and disjunction A ⊕ B

as goals which are so far prohibit. We will resurrect them via residuation,
not because they truly add expressive power, but they are convenient both
for program expression and for compilation.

13.7 Historical Notes

The notion that a logic programming language should be characterized
as a fragment of logic with complete goal-directed search originated with
Miller, Nadathur, and Scedrov [11] who explored logic programming based
on higher-order logic. A revised and expanded version appeared a couple
of years later [10]. These papers introduced the term uniform proofs for those
proofs that work asynchronously on the goal until it is atomic.

Some time later this was generalized by Andreoli and Pareschi who first
recognized the potential of linear logic for logic programming [3]. They
used a fragment of classical linear logic (rather than the intuitionistic linear
logic we use here), which does not have a distinguished notion of goal. The
language LO was therefore more suited to concurrent and object-oriented
programming [1, 5, 4].

Andreoli also generalized the earlier notion of uniform proofs to focus-
ing proofs [2], capturing now both the asynchronous as well as the syn-
chronous behavior of connectives in a proof-theoretic manner. This seminal
work subsequently had many important applications in logic, concurrency,
and functional programming, and not just in logic programming.

The thread of research on intuitionistic, goal-directed logic program-
ming resumed with the work by Hodas and Miller [8, 9] who proposed
essentially what we presented in this lecture, with some additional extra-
logical features borrowed from Prolog. In honor of its central new con-
nective the language was called Lolli. These ideas were later picked up in
the design of a linear logical framework [6, 7] which augments Lolli with a

LECTURE NOTES OCTOBER 10, 2006

Abstract Logic Programming L13.7

richer quantification and explicit proof terms.

13.8 Exercises

Exercise 13.1 Prove that A ⊃ B is equivalent to (!A) (B in the sense that each
entails the other, that is, A ⊃ B `̀ (!A) (B and vice versa.

Exercise 13.2 At one point we defined pure Prolog with the connectives A ∧ B,
>, A∨B,⊥, A ⊃ B, and ∀x.A, suitably restricted into legal goals and programs.
Show how to translate such programs and goals into linear logic so that focusing
proofs for (non-linear) logic are mapped isomorphically to focusing proofs in linear
logic, and prove that your translation is correct in that sense.

13.9 Answer

Consider the right rule for !A.

Γ; · `̀ A true

Γ; · `̀ !A true
!R

This rule is invertible: whenever the conclusion is provable, then so is the
premiss. However, !A is not asynchronous (see the counterexample in this
lecture). If we had formulated the rule as

∆ = (·) Γ; · `̀ A true

Γ;∆ `̀ !A true
!R

we would have recognized it as not being invertible, because ∆ is not nec-
essarily empty.

13.10 References

[1] Jean-Marc Andreoli. Proposal for a Synthesis of Logic and Object-Oriented
Programming Paradigms. PhD thesis, University of Paris VI, 1990.

[2] Jean-Marc Andreoli. Logic programming with focusing proofs in lin-
ear logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[3] Jean-Marc Andreoli and Remo Pareschi. LO and behold! Concurrent
structured processes. In Proceedings of OOPSLA’90, pages 44–56, Ot-
tawa, Canada, October 1990. Published as ACM SIGPLAN Notices,
vol.25, no.10.

LECTURE NOTES OCTOBER 10, 2006

L13.8 Abstract Logic Programming

[4] Jean-Marc Andreoli and Remo Pareschi. Linear objects: Logical pro-
cesses with built-in inheritance. New Generation Computing, 9:445–473,
1991.

[5] Jean-Marc Andreoli and Remo Pareschi. Logic programming with se-
quent systems: A linear logic approach. In P. Schröder-Heister, editor,
Proceedings of Workshop to Extensions of Logic Programming, Tübingen,
1989, pages 1–30. Springer-Verlag LNAI 475, 1991.

[6] Iliano Cervesato and Frank Pfenning. A linear logical framework. In
E. Clarke, editor, Proceedings of the Eleventh Annual Symposium on Logic
in Computer Science, pages 264–275, New Brunswick, New Jersey, July
1996. IEEE Computer Society Press.

[7] Iliano Cervesato and Frank Pfenning. A linear logical framework. In-
formation & Computation, 179(1):19–75, November 2002.

[8] Joshua S. Hodas and Dale Miller. Logic programming in a fragment
of intuitionistic linear logic. In Proceedings of the 6th Annual Symposium
on Logic in Computer Science (LICS’91), pages 32–42, Amsterdam, The
Netherlands, July 1991. IEEE Computer Society Press.

[9] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–365,
1994.

[10] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[11] Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Har-
rop formulas and uniform proof systems. In David Gries, editor, Sym-
posium on Logic in Computer Science, pages 98–105, Ithaca, NY, June
1987.

LECTURE NOTES OCTOBER 10, 2006

Abstract Logic Programming L13.9

Judgmental Rules

P res � P true
id

A ures ∈ Γ Γ;∆;A res � P true

Γ;∆ `̀ P true
copy

∆;A res � P true

∆, A res `̀ P true
focus

Multiplicative Connective

∆, A res `̀ B true

∆ `̀ A (B true
(R

∆A `̀ A true ∆B;B res � P true

∆A,∆B ;A (B res � P true
(L

Additive Connectives

∆ `̀ A true ∆ `̀ B true

∆ `̀ A & B true
&R

∆;A res � P true

∆;A & B res � P true
&L1

∆;B res � P true

∆;A & B res � P true
&L2

∆ `̀ > true
>R

no >L rule

Exponential Connective

(Γ, A ures);∆ `̀ B true

Γ;∆ `̀ A ⊃ B true
⊃R

Γ; · `̀ A true Γ;B res � P true

Γ;∆;A ⊃ B res � P true
⊃L

Quantifier

∆ `̀ A x /∈ FV(Γ;∆)

∆ `̀ ∀x.A
∀R

∆;A(t/x) res � P true

∆;∀x.A res � P true
∀L

Figure 1: Focused Intuitionistic Linear Logic; Asynchronous Fragment

LECTURE NOTES OCTOBER 10, 2006

L13.10 Abstract Logic Programming

LECTURE NOTES OCTOBER 10, 2006

15-819K: Logic Programming

Lecture 14

Cut Elimination

Frank Pfenning

October 12, 2006

In this lecture we consider how to prove that connectives are asynchronous
as goals and then consider cut elimination, one of the most important and
fundamental properties of logical systems. We then revisit residuation to
restore some of the connectives not present in the asynchronous fragment
of linear logic. For each synchronous assumption we find a corresponding
synchronous goal connective.

14.1 Proving Connectives Asynchronous

We have claimed in the last lecture that certain connectives of linear logic
are asynchronous as goals in order to justify their inclusion in our linear
logic programming language. I know of essentially two ways to prove that
such operators are indeed asynchronous. The first is by simple inductions,
one for each asynchronous connectives. The following theorem provides
an example. In todays lecture we generally omit the judgment form for
propositions such as true on the right-hand side, and res or ures on the left-
hand side, since this can be infered from the placement of the proposition.

Theorem 14.1 If ∆ `̀ A & B then ∆ `̀ A and ∆ `̀ B.

Proof: By induction on the structure of D, the deduction of ∆ `̀ A&B. We
show only two cases; others are similar.

Case: D =

D1

∆ `̀ A

D2

∆ `̀ B

∆ `̀ A & B
&R.

∆ `̀ A Subderivation D1

∆ `̀ B Subderivation D2

LECTURE NOTES OCTOBER 12, 2006

L14.2 Cut Elimination

Case: D =

D1

∆′, C1 `̀ A & B

∆′, C1 & C2 `̀ A & B
&L1 where ∆ = (∆′, C1 & C2).

∆′, C1 `̀ A and
∆′, C1 `̀ B By i.h. on D1

∆′, C1 & C2 `̀ A By rule &L1

∆′, C1 & C2 `̀ B By rule &L1

2

There is a second way to proceed, using the admissibility of cut from
the next section directly, without appeal to induction.

14.2 Admissibility of Cut

So far we have not justified that the right and left rules for the connectives
actually match up in an expected way. What we would like to show is
that the judgment of a being resource and the judgment of truth, when
combined in a linear hypothetical judgment, coincide. There are two parts
to this. First, we show that with the resource A we can achieve the goal A,
for arbitrary A (not just atomic predicates).

Theorem 14.2 (Identity Principle) A res `̀ A true for any proposition A.

Proof: See Exercise 12.1. 2

Second, we show that if we can achieve A as a goal, it is legitimate
to assume A as a resource. This completes the theorems which show our
sequent calculus is properly designed.

Theorem 14.3 (Admissibility of Cut)

If ∆A `̀ A true and ∆C , A res `̀ C true then ∆C ,∆A `̀ C true .

Proof: We prove this here only for the purely linear fragment, without the
operators involving unrestricted resources (!A, A ⊃ B). The proof proceeds
by nested induction, first on the structure of A, the so-called cut formula,
then simultaneously on the structure of D, the derivation of ∆A `̀ A true

and E , the derivation of ∆C , A res `̀ C true . This form of induction means
we can appeal to the induction hypothesis

1. either on a smaller cut formula with arbitrary derivations, or

LECTURE NOTES OCTOBER 12, 2006

Cut Elimination L14.3

2. on the same cut formula A and same D, but a subderivation of E , or

3. on the same cut formula A and same E , but a subderivation of D.

There are many cases to distinguish; we show only three which illustrate
the reasons behind the form of the induction above.

Case: D =

D1

∆A `̀ A1

D2

∆A `̀ A2

∆A `̀ A1 & A2

&R and E =

E1

∆C , A1 `̀ C

∆C , A1 & A2 `̀ C
&L1

.

∆C ,∆A `̀ C By i.h. on A1, D1 and E1

Case: D =

D1

∆1 `̀ A1

D2

∆2 `̀ A2

∆1,∆2 `̀ A1 ⊗ A2

⊗R and E =

E ′

∆C , A1, A2 `̀ C

∆C , A1 ⊗ A2 `̀ C
⊗L.

∆C , A1,∆2 `̀ C By i.h. on A2, D2, and E ′

∆C ,∆1,∆2 `̀ C By i.h. on A1, D1 and the previous line
∆C ,∆A `̀ C Since ∆A = (∆1,∆2)

Case: D
∆A `̀ A

is arbitrary and E =

E1

∆′,D1, A `̀ C

∆′,D1 & D2, A `̀ C
&L1.

∆′,D1,∆A `̀ C By i.h. on A, D and E1

∆′,D1 & D2,∆A `̀ C By rule &L1

2

The shown cases are typical in that if the cut formulas were just intro-
duced on both the right and the left, then we can appeal to the induction
hypothesis on its subformulas. Otherwise, we can keep the cut formula
and either D or E the same and appeal to the induction hypothesis on the
subderivations on the other side.

The case for ⊗ above shows why we cannot simply use an induction
over the derivations D and E , because the second time we appeal to the
induction hypothesis, one of the derivations come from a previous appeal
to the induction hypothesis and could be much larger than E .

The proof is not too difficult to extend to the case with unrestricted as-
sumptions (see Exercise 14.2).

LECTURE NOTES OCTOBER 12, 2006

L14.4 Cut Elimination

14.3 Cut Elimination

Cut elimination is the property that if we take cut as a new inference rule,
it can be eliminated from any proof. Actually, here we would have two cut
rules.

Γ;∆A `̀ A true Γ;∆C , A res `̀ C true

Γ;∆C ,∆A `̀ C true
cut

Γ; · `̀ A true (Γ, A ures);∆ `̀ C true

Γ;∆ `̀ C true
cut!

Showing that cut can be eliminated is an entirely straightforward induction
over the structure of the deduction with cuts. In each case we just appeal to
the induction hypothesis on each premiss and re-apply the rule to the get
the same conclusion. The only exception are the cut rules, in which case we
obtain cut-free derivations of the premisses by induction hypothesis and
then appeal to the admissibility of cut to get a cut-free derivation of the
conclusion.

Cut as a new rule, however, is unfortunate from the perspective of proof
search. When read bottom-up, we have to invent a new proposition A,
which we then prove. When this proof succeeds we would be allowed
to assume it into our overall proof. While mathematically inventing such
lemmas A is critical, in a logic programming language it destroys the goal-
directed character of search.

14.4 Asynchronous Connectives, Revisited

Using cut elimination we can give alternate proofs that connectives are
asynchronous. We show only one example, for conjunction.

Theorem 14.4 If ∆ `̀ A & B then ∆ `̀ A and ∆ `̀ B.

Proof: (Alternate) Direct, using admissibility of cut.

∆ `̀ A & B Given
A `̀ A Identity principle
A & B `̀ A By rule &L1

∆ `̀ A By admissibility of cut

B `̀ B Identify principle
A & B `̀ B By rule &L2

∆ `̀ B By admissibility of cut

2

LECTURE NOTES OCTOBER 12, 2006

Cut Elimination L14.5

14.5 Residuation and Synchronous Goal Connectives

In the focusing calculus from the previous lecture, all connectives are asyn-
chronous as goals and synchronous when in focus as assumptions. In our
little programming example of peg solitaire, we extensively used simulta-
neous conjunction (⊗) and and also disjunction (⊕). One question is how
to extend our language to include these connectives. So far, we have, for
both programs and goals:

A ::= P | A1 (A2 | A1 & A2 | > | ∀x.A | A1 ⊃ A2

A principled way to approach this question is to return to residuation.
Given a program clause this constructs a goal whose search behavior is
equivalent to the behavior of the clause. Since we have already seen resid-
uation in detail for the non-linear case, we just present the rules here.

P ′ `̀ P > P ′
.
= P

D1 `̀ P > G1

G2 (D1 `̀ P > G1 ⊗ G2

D1 `̀ P > G1 D2 `̀ P > G2

D1 & D2 `̀ P > G1 ⊕ G2 > `̀ P > 0

D `̀ P > G x /∈ FV(P)

∀x.D `̀ P > ∃x.G

D1 `̀ P > G1

G2 ⊃ D1 `̀ P > G1 ⊗! G2

There are a few connectives we have not seen in their full generality
in linear logic, namely equality, existential quantification, and a curious
asymmetric connective G1 ⊗! G2. We concentrate here on their behavior as
goals (see Exercise 14.5). Because these connectives mirror the synchronous
behavior of the assumption in focus, proving one of these is now a focusing
judgment, except that we focus on a goal. We write this as Γ;∆ � G.

First, in our proof search judgment we replace the focus and copy rules
by appeals to residuation.

D ∈ Γ D `̀ P > G Γ;∆ � G

Γ;∆ `̀ P
resid!

D `̀ P > G Γ;∆ � G

Γ;∆,D `̀ P
resid

LECTURE NOTES OCTOBER 12, 2006

L14.6 Cut Elimination

Next the rules for focusing on the right.

∆ = (·)

∆ � P
.
= P

id
∆ = (∆1,∆2) ∆1 � G1 ∆2 � G2

∆ � G1 ⊗ G2

⊗R

∆ � G1

∆ � G1 ⊕ G2

⊕R1

∆ � G2

∆ � G1 ⊕ G2

⊕R2
no 0R rule for

∆ � 0

∆ � G(t/x)

∆ � ∃x.G
∃R

Γ;∆ � G1 Γ; · � G2

Γ;∆ � G1 ⊗! G2

⊗!R

Furthermore, we transition back to asynchronous decomposition when we
encounter an asynchronous connective. We call this blurring the focus. Con-
versely, we focus on the right when encountering a synchronous connec-
tive.

∆ `̀ G G asynch.

∆ � G
blur

∆ � G G synch.

∆ `̀ G
rfocus

For completeness, we give the remaining rules for asynchronous goals (the
atomic case is above in the resid and resid! rules).

∆,D1 `̀ G2

∆ `̀ D1 (G2

(R
∆ `̀ G1 ∆ `̀ G2

∆ `̀ G1 & G1

&R
∆ `̀ >

>R

∆ `̀ G x 6∈ FV(Γ;∆)

∆ `̀ ∀x.G
∀R

(Γ,D1);∆ `̀ G2

Γ;∆ `̀ D1 ⊃ G2

⊃R

This yields the following grammar of so-called linear hereditary Harrop
formulas which form the basis of the Lolli language. The fragment without
(and ⊗, replacing ∧/&,∨/⊕,⊥/0,∧/⊗!, is called hereditary Harrop formu-
las and forms the basis for λProlog.

Goals G ::=
Asynch. P | D1 (G2 | G1 & G2 | > | ∀x.G | D1 ⊃ G2

Synch. | P ′ .
= P | G1 ⊗ G2 | G1 ⊕ G2 | 0 | ∃x.A | G1 ⊗! G2

Programs D ::= P | G2 (D1 | D1 & D2 | > | ∀x.D | G2 ⊃ D1

We have lined up the synchronous goals with their counterparts as syn-
chronous programs just below, as explained via residuation.

Strictly speaking, going back and forth between the ∆ `̀ G and ∆ � G

is unnecessary: we could coalesce the two into one because programs are

LECTURE NOTES OCTOBER 12, 2006

Cut Elimination L14.7

always fully synchronous. However, it highlights the difference between
the synchronous and asynchronous right rules: Asynchronous decomposi-
tion in ∆ `̀ G is automatic and involves no choice, synchronous decom-
position ∆ � G involves a significant choice and may fail. Moreover, in
just about any logical extension of focusing beyond this fragment, we need
to pause when the goal becomes synchronous during the asynchronous
decomposition phase and consider whether to focus on an assumption in-
stead. Here, this would always fail.

In practice, it is convenient to admit an even slightly richer set of goals,
whose meaning can be explained either via a transformation to the connec-
tives already shown above or directly via synchronous or asynchronous
rules for them (see Exercise 14.3).

14.6 Completeness of Focusing

Soundness of the focusing system is easy to see, since each rule is a restric-
tion of the corresponding left and right rules for the non-focused sequent
calculus. Completeness is somewhat more difficult. We can continue the
path mapped out in the proof that various connectives are asynchronous
as goals, proving that the same connectives are indeed synchronous as pro-
grams. Alternatively, we can prove a generalization of the cut elimina-
tion results for focused derivations and use that in an overall completeness
proof. The references below give some pointers to the two different styles
of proof in the literature.

14.7 Historical Notes

Cut elimination, one of the most fundamental theorems in logic, is due to
Gentzen [3], who introduced the sequent calculus and natural deduction
for both classical and intuitionistic logic and showed cut elimination. His
formulation of the sequent calculus had explicit rules for exchange, weak-
ing, and contraction, which make the proof somewhat more tedious than
the one we presented here. I first provided proofs by simple nested struc-
tural induction, formalized in a logical framework, for intuitionistic and
classical [5, 6] as well as linear logic [4].

Andreoli introduced focusing for classical linear logic [1] and proved its
completeness through a number of inversion and admissibility properties.
An alternative proof using cut elimination as a central lemma, applied to
intuitionistic linear logic was given by Chaudhuri [2].

LECTURE NOTES OCTOBER 12, 2006

L14.8 Cut Elimination

14.8 Exercises

Exercise 14.1 Prove A (B to be asynchronous on the right in two ways:

i. directly by induction, and

ii. by appealing to the admissibility of cut.

Exercise 14.2 In order to prove the cut elimination theorem in the presence of
unrestricted assumptions, we generalize to the following:

1. (Cut) If Γ;∆A `̀ A true and Γ;∆C , A res `̀ C true then Γ;∆C ,∆A `̀

C true .

2. (Cut!) If Γ; · `̀ A true and (Γ, A ures);∆C `̀ C true then Γ;∆C `̀

C true

The second form of cut expresses that if we can prove A without using resources,
it is legitimate to assume it as an unrestricted resource, essentially because we can
generate as many copies of A as we need (it requires no resources).

The nested induction now proceeds first on the structure of the cut formula A,
then on the form of cut where cut < cut!, then simultaneously on the structures
of the two given derivations D and E . This means we can appeal to the induction
hypothesis

1. either on a subformula of A with arbitrary derivations, or

2. on the same formula A where cut! appeals to cut, or

3. on the same cut formula and same form of cut and same D, but a subderiva-
tion of E , or

4. on the same cut formula and same form of cut and same E , but a subderiva-
tion of D.

Show the cases explicitly involving !A, A ⊃ B, and copy in this proof. You
may assume that weakening the unrestricted assumptions by adding more is le-
gitimate and does not change the structure of the given deduction. Note carefully
appeals to the induction hypothesis and explain why they are legal.

Exercise 14.3 We consider even larger set of goals to squeeze the last bit of conve-
nience out of our language without actually affecting its properties.

i. Give the rule(s) to allow !G as a goal.

LECTURE NOTES OCTOBER 12, 2006

Cut Elimination L14.9

ii. Give the rule(s) to allow 1 as a goal.

iii. We could allow simultaneous conjunction on the left-hand side of linear im-
plication goals, because (D1 ⊗D2) (G is equivalent to D1 ((D2 (G),
which lies within the permitted fragment. Explore which formulas R could
be allowed in goals of the form R (G because they can be eliminated by a
local equivalence-preserving transformation such as the one for ⊗.

iv. Now explore which formulas S could be allowed in goals of the form S ⊃ G

without affecting the essence of the language.

Exercise 14.4 Prove that the focusing system with left and right rules is equiva-
lent to the system with only right rules and residuation for atomic goals.

Exercise 14.5 Through residuation, we have introduced two new connectives to
linear logic, A ⊗! B and P ′ .

= P , but we have only considered their right rules.
Give corresponding left rules for them in the sequent calculus and prove cut

elimination and identity for your rules.

14.9 References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[2] Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD
thesis, Carnegie Mellon University, 2006. To appear.

[3] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68–
131, North-Holland, 1969.

[4] Frank Pfenning. Structural cut elimination in linear logic. Technical Re-
port CMU-CS-94-222, Department of Computer Science, Carnegie Mel-
lon University, December 1994.

[5] Frank Pfenning. A structural proof of cut elimination and its represen-
tation in a logical framework. Technical Report CMU-CS-94-218, De-
partment of Computer Science, Carnegie Mellon University, November
1994.

[6] Frank Pfenning. Structural cut elimination I. intuitionistic and classical
logic. Information and Computation, 157(1/2):84–141, March 2000.

LECTURE NOTES OCTOBER 12, 2006

L14.10 Cut Elimination

LECTURE NOTES OCTOBER 12, 2006

15-819K: Logic Programming

Lecture 15

Resource Management

Frank Pfenning

October 17, 2006

In this lecture we address the resource management problem in linear logic
programming. We also give some small but instructive examples of linear
logic programming, supplementing the earlier peg solitaire code.

15.1 Input/Output Interpretation of Resources

Reconsider the rule for simultaneous conjunction as a goal.

∆ = (∆1,∆2) ∆1 `̀ G1 ∆2 `̀ G2

∆ `̀ G1 ⊗ G2

⊗R

The difficulty in using this rule in proof search is that, as written, we have
to “guess” the right way to split the resources ∆ into two. Clearly, enumer-
ating all possible ways to split ∆ will be very inefficient, and also difficult
for the programmer to predict.

Instead, we pass all resources to the goal G1 and then pass the ones that
were not consumed in the derivation of G1 to G2. We write

∆I \ ∆O `̀ G

where ∆I is the input context and ∆O is the output context generated by
the proof search for G. The invariant we preserve is that

∆I \ ∆O `̀ G iff ∆I − ∆O `̀ G

where ∆I − ∆O subtracts the resources in ∆O from the resources in ∆I .
It is convenient to keep ∆I and ∆O ordered, so that this difference can be
computed component by component (see below).

LECTURE NOTES OCTOBER 17, 2006

L15.2 Resource Management

Now the rule for simultaneous conjunction is

∆I \ ∆M `̀ G1 ∆M \ ∆O `̀ G2

∆I \ ∆O `̀ G1 ⊗ G2

⊗R.

It is easy to verify that the above invariant holds for this rule. More for-
mally, this would be part of a soundness and completeness proof for the
input/output interpretation of resources.

15.2 Slack Resources

The simple input/output interpretation for resources breaks down for con-
sumptive truth (>). Recall the rule

∆ `̀ >
>R

which translates to
∆I ⊇ ∆O

∆I \ ∆O `̀ >
>R

because > may consume any of its input but does not need to. Now we are
back at the original problem, since we certainly do not want to enumerate
all possible subsets of ∆I blindly.

Instead, we pass on all the input resources, but also a flag to indicate
that all of these resources could have been consumed. That means if they
are left over at the end, we can succeed instead of having to fail. We write
the judgment as

∆I \ ∆O `̀ v G

where v = 0 means G used exactly the resources in ∆I − ∆O, while v = 1
means G could also have consumed additional resources from ∆O. Now
our invariants are:

i. ∆I \ ∆O `̀ 0 G iff ∆I − ∆O `̀ G

ii. ∆I \ ∆O `̀ 1 G iff ∆I − ∆O,∆′ `̀ G for any ∆O ⊇ ∆′.

The right rule for > with slack is just

∆I \ ∆I `̀ 1 >
>R.

LECTURE NOTES OCTOBER 17, 2006

Resource Management L15.3

In contrast, the rule for equality which requires the linear context to be
empty is

∆I \ ∆I `̀ 0 t
.
= t

.
=R.

As far as resources are concerned, the only difference is whether slack is
allowed (v = 1) or not (v = 0).

We now briefly return to simultaneous conjunction. There is slack in
the deduction for G1 ⊗ G2 if there is slack on either side: any remaining
resources could be pushed up into either of the two subderivations as long
as there is slack in at least one.

∆I \ ∆M `̀ v G1 ∆M \ ∆O `̀w G2

∆I \ ∆O `̀ v∨w G1 ⊗ G2

⊗R.

Here v ∨ w is the usual Boolean disjunction between the two flags: it is 0 if
both disjuncts are 0 and 1 otherwise.

15.3 Strict Resources

Unfortunately, there is still an issue in that resource management does not
take into account all information it should. There are examples in the litera-
ture [2], but they are not particularly natural. For an informal explanation,
consider the overall query ∆ `̀ G. We run this as ∆ \ ∆O `̀ v G, where
∆O and v are returned. We then have to check that all input has indeed be
consumed by verifying that ∆O is empty. If ∆O is not empty, we have to
fail this attempt and backtrack.

We would like to achieve that we fail as soon as possible when no proof
can exist due to resource management issues. In the present system we
may sometimes run to completion only to note at that point that we failed
to consume all resources. We can avoid this issue by introducing yet one
more distinction into our resource management judgment by separating
out strict resources. Unlike ∆I , which represents resources which may be
used, Ξ represent resources which must be used in a proof.

Ξ;∆I \ ∆O `̀ v G

The invariant does not get significantly more complicated.

i. Ξ;∆I \ ∆O `̀ 0 G iff Ξ,∆I − ∆O `̀ G

ii. Ξ;∆I \ ∆O `̀ 1 G iff Ξ,∆I − ∆O,∆′ `̀ G for all ∆O ⊇ ∆′.

LECTURE NOTES OCTOBER 17, 2006

L15.4 Resource Management

When reading the rules please remember that no resource in Ξ is ever
passed on: it must be consumed in the proof of Ξ;∆I \ ∆O `̀ v G. The un-
restricted context Γ remains implicit and is always passed from conclusion
to all premisses.

We will enforce as an additional invariant that input and output context
have the same length and structure, except that some inputs have been con-
sumed. Such consumed resources are noted as underscores ‘ ’ in a context.
We use ∆I ⊇ ∆O and ∆I − ∆O with the following definitions:

(·) ⊇ (·)

∆I ⊇ ∆O

(∆I ,) ⊇ (∆O,)

∆I ⊇ ∆O

(∆I , A) ⊇ (∆O,)

∆I ⊇ ∆O

(∆I , A) ⊇ (∆O, A)

and, for ∆I ⊇ ∆O,

(·) − (·) = (·)

∆I − ∆O = ∆

(∆I ,) − (∆O,) = (∆,)

∆I − ∆O = ∆

(∆I , A) − (∆O,) = (∆, A)

∆I − ∆O = ∆

(∆I , A) − (∆O, A) = (∆,)

Atomic Goals. When a goal is atomic, we focus on an assumption, resid-
uate, and solve the resulting subgoal. There are three possibilities for using
an assumption: from Γ, from Ξ, or from ∆I . Because we use residuation,
resource management is straightforward here: we just have to replace the
assumption with the token ‘ ’ to indicate that the resource has been con-
sumed.

D ∈ Γ D `̀ P > G Γ;Ξ;∆I \ ∆O `̀ v G

Γ;Ξ;∆I \ ∆O `̀ v P
resid!

D `̀ P > G Γ; (Ξ1, ,Ξ2);∆I \ ∆O `̀ v G

Γ; (Ξ1,D,Ξ2);∆I \ ∆O `̀ v P
resid1

D `̀ P > G Γ;Ξ; (∆′

I
, ,∆′′

I
) \ ∆O `̀ v G

Γ;Ξ; (∆′

I
,D,∆′′

I
) \ ∆O `̀ v P

resid2

Asynchronous Multiplicative Connective. There is only one multiplica-
tive asynchronous connective, D (G which introduces a new linear as-
sumption. Since D must be consumed in the proof of G, we add it to the

LECTURE NOTES OCTOBER 17, 2006

Resource Management L15.5

strict context Ξ.
(Ξ,D);∆I \ ∆O `̀ v G

Ξ;∆I \ ∆O `̀ v D (G
(R

Synchronous Multiplicative Connectives. In the linear hereditary Har-
rop fragment as we have constructed it here, there are only two multiplica-
tive connectives that are synchronous as goals: equality and simultaneous
conjunction. The multiplicative unit 1 is equivalent to P

.
= P and does not

explicitly arise in residuation. For equality, we just need to check that Ξ is
empty and pass on all input resources to the output, indicating that there
is no slack (v = 0).

Ξ = (, . . . ,)

Ξ;∆I \ ∆I `̀ 0 P
.
= P

.
=R

For simultaneous conjunction, we distinguish two cases, depending on
whether the first subgoal has slack. Either way, we turn all strict resources
from Ξ into lax resources for the first subgoal, since the second subgoal
is waiting, and may potentially consume some of the formulas in Ξ that
remain unconsumed in the first subgoal.

. ; Ξ,∆I \ Ξ′,∆′

I
`̀ 0 G1 Ξ′;∆′

I
\ ∆O `̀ v G2 (Ξ ⊇ Ξ′)

Ξ;∆I \ ∆O `̀ v G1 ⊗ G2

⊗R0

If the first subgoal is slack, then it could consume the leftover resources in
Ξ′, so they do not necessarily need to be consumed in the second subgoal.
Originally strict resources that remain after the second subgoal are then
dropped, noting that the first subgoal must have (implicitly) consumed
them.

. ; Ξ,∆I \ Ξ′,∆′

I
`̀ 1 G1 . ; Ξ′,∆′

I
\ Ξ′′,∆O `̀ ∗ G2 (Ξ ⊇ Ξ′ ⊇ Ξ′′)

Ξ;∆I \ ∆O `̀ 1 G1 ⊗ G2

⊗R1

It does not matter whether the second subgoal is strict or lax, since the
disjunction is already known to be 1. We indicate this with an asterisk ‘∗’.

Asynchronous Additive Connectives. The additive connectives that are
asynchronous as goals are alternative conjunction (G1 & G2) and consump-
tive truth (>). First >, which motivated the slack indicator v. It consumes
all of Ξ and passes the remaining inputs on without consuming them.

Ξ;∆I \ ∆I `̀ 1 >
>R

LECTURE NOTES OCTOBER 17, 2006

L15.6 Resource Management

For alternative conjunction, we distinguish two subcases, depending on
whether the first subgoal turns out to have slack or not. If not, then the
second subgoal must consume exactly what the first subgoal consumed,
namely Ξ and ∆I − ∆O. We therefore add this to the strict context. The lax
context is empty, and we do not need to check the output (it must also be
empty, since it is a subcontext of the empty context). Again, we indicate
this with a ‘∗’ to denote an output we ignore.

Ξ;∆I \ ∆O `̀ 0 G1 Ξ,∆I − ∆O; · \ ∗ `̀ ∗ G2

Ξ;∆I \ ∆O `̀ 0 G1 & G2

&R0

If the first subgoal has slack, with still must consume everything that was
consumed in the first subgoal. In addition, we may consume anything that
was left.

Ξ;∆I \ ∆M `̀ 1 G1 Ξ,∆I − ∆M ;∆M \ ∆O `̀ v G2

Ξ;∆I \ ∆O `̀ v G1 & G2

&R1

Synchronous Additive Connectives. Disjunction is easy, because it in-
volves a choice among alternatives, but not resources, which are just passed
on.

Ξ;∆I \ ∆O `̀ v G1

Ξ;∆I \ ∆O `̀ v G1 ⊕ G2

⊕R1

Ξ;∆I \ ∆O `̀ v G2

Ξ;∆I \ ∆O `̀ v G1 ⊕ G2

⊕R2

Falsehood is even easier, because it represents failure and therefore has no
right rule.

no rule 0R
Ξ;∆I \ ∗ `̀ ∗ 0

Exponential Connectives. Unrestricted implication is quite simple, since
we just add the new assumption to the unrestricted context.

Γ,D; Ξ;∆I \ ∆O `̀ v G

Γ;Ξ;∆I \ ∆O `̀ v D ⊃ G
⊃R

The (asymmetric) exponential conjunction passes all resources to the first
subgoal, since the second cannot use any resources. We do not care if the
exponential subgoal is strict or lax, since it does not receive or return any
resources anyway.

Γ;Ξ;∆I \ ∆O `̀ v G1 Γ; ·; · \ ∗ `̀ ∗ G2

Γ;Ξ;∆I \ ∆O `̀ v G1 ⊗! G2

⊗!R

LECTURE NOTES OCTOBER 17, 2006

Resource Management L15.7

Quantifiers. Quantifiers are resource neutral.

Γ;Ξ;∆I \ ∆O `̀ v G x /∈ FV(Γ;Ξ;∆I)

Γ; Ξ;∆I \ ∆O `̀ v ∀x.G
∀R

Γ;Ξ;∆I \ ∆O `̀ v G(t/x)

Γ; Ξ;∆I \ ∆O `̀ v ∃x.G
∃R

This completes the connectives for the linear hereditary Harrop formu-
las. The proof that these are sound and complete amounts to showing the
invariants stated at the beginning of this section. A crucial lemma states
that resources can be added to the lax input context without affecting prov-
ability.

If Ξ;∆I \ ∆O `̀ v G then Ξ; (∆I ,∆
′) \ (∆O,∆′) `̀ v G for all ∆′.

This provides a measure of modularity to proofs using consumable re-
sources, at least as far as the existence of proofs is concerned. During proof
search, however, it is clear that ∆′ could interfere with with the proof if
added to the input.

At the top level, we solve ∆ `̀ G by invoking ∆; · \ ∗ `̀ ∗ G. We do
not need to check the output context (which will be empty) or the slack
indicator, because ∆ is passed in as strict context.

15.4 Sample Program: Permutation

To illustrate linear logic programming we give a few small programs. The
first computes all permutations of a list. It does so by adding the elements
to the linear context and then reading them out. Since the linear context is
not ordered, this allows all permutations.

perm([X|Xs],Ys) ◦− (elem(X) (perm(Xs,Ys)).

perm([],[Y|Ys]) ◦− elem(Y) ⊗ perm([],Ys).

perm([],[]).

The last clause can only apply if the context is empty, so any order of these
clauses will work. However, putting the third before the second will cause
more backtracking especially if permutation is embedded multiplicatively
in a larger program.

LECTURE NOTES OCTOBER 17, 2006

L15.8 Resource Management

15.5 Sample Program: Depth-First Search

Imperative algorithms for depth-first search mark nodes that have been
visited to prevent looping. We can model this in a linear logic program by
starting with a linear assumption node(x) for every node x and consuming
this assumption when visiting a node. This means that a node cannot be
used more than once, preventing looping.

We assume a predicate edge(x,y) which holds whenever there is a di-
rected edge from x to y.

dfs(X,Y) ◦− edge(X,Y).

dfs(X,Y) ◦− edge(X,Z) ⊗ node(Z) ⊗ dfs(Z,Y).

This by itself is note quite enough because not all nodes might be visited.
We can allow this with the following top-level call

path(X,Y) ◦− node(X) ⊗ dfs(X,Y) ⊗ >.

15.6 Sample Program: Stateful Queues

In Lecture 11 we have seen how to implement a queue with a difference
list, but we had to pass the queue around as an argument to any predicate
wanting to use it. We can also maintain the queue in the linear context.
Recall that we used a list of instructions enq(x) and deq(x), and that at the
end the queue must be empty.

queue(Is) ◦− (front(B) ⊗ back(B) (q(Is)).

q([enq(X)|Is]) ◦− back([X|B]) ⊗ (back(B) (q(Is)).

q([deq(X)|Is]) ◦− front([X|Xs]) ⊗ (front(Xs) (q(Is)).

q([]) ◦− front([]) ⊗ back([]).

In this version, the dequeuing may borrow against future enqueue opera-
tions (see Exercise 15.2).

It is tempting to think we might use the linear context itself as a kind
of queue, similar to the permutation program, but using cut ‘!’ to avoid
getting all solution. This actually does not work, since the linear context is
maintained as a stack: most recently made assumptions are tried first.

LECTURE NOTES OCTOBER 17, 2006

Resource Management L15.9

15.7 Historical Notes

Resource management for linear logic programming was first considered
by Hodas and Miller in the design of Lolli [7, 8]. The original design
underestimated the importance of consumptive truth, which was later re-
paired by adding the slack indicator [5] and then the strict context [1, 2].
Primitive operations on the contexts are still quite expensive, which was
addressed subsequently through so-called tag frames which implement the
context management system presented here in an efficient way [6, 9].

An alternative approach to resource management is to use Boolean con-
straints to connect resources in different branches of the proof tree, devel-
oped by Harland and Pym [3, 4]. This is more general, because one is not
committed to depth-first search, but also potentially more expensive.

An implementation of the linear logic programming language Lolli in
Standard ML can be found at http://www.cs.cmu.edu/~fp/lolli. The
code presented in this course, additional puzzles, a propositional theorem
prover, and more example can be found in the distribution.

15.8 Exercises

Exercise 15.1 Prove carefully that the perm predicate does implement permuta-
tion when invoked in the empty context. You will need to generalize this statement
to account for intermediate states in the computation.

Exercise 15.2 Modify the stateful queue program so it fails if an element is de-
queued before it is enqueued.

Exercise 15.3 Give an implementation of a double-ended queue in linear logic
programming, where elements can be both enqueued and dequeued at both ends.

Exercise 15.4 Sometimes, linear logic appears excessively pedantic in that all re-
source must be used. In affine logic resources may be used at most once. De-
velop the connectives of affine logic, its asynchronous fragment, residuation, and
resource management for affine logic. Discuss the simplifications in comparison
with linear logic (if any).

Exercise 15.5 Philosophers have developed relevance logic in order to capture
that in a proof of A implies B, some use of A should be made in the proof of B.
Strict logic is a variant of relevance logic where we think of strict assumptions as
resources which must be used at least once in a proof. Develop the connectives of
strict logic, its asynchronous fragment, residuation, and resource management for
strict logic. Discuss the simplifications in comparison with linear logic (if any).

LECTURE NOTES OCTOBER 17, 2006

L15.10 Resource Management

Exercise 15.6 In the resource managment system we employed a relatively high-
level logical system, without goal stack, failure continuation, or explicit unifica-
tion. Extend the abstract machine which uses these mechanisms by adding resource
management as given in this lecture.

Because we can make linear or unrestricted assumptions in the course of search,
not all information associated with a predicate symbol p is static, in the global
program. This means the rule for atomic goals must change. You should fix the
order in which assumptions are tried by using most recently made assumptions
first and fall back on the static program when all dynamic possibilities have been
exhausted.

15.9 References

[1] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient re-
source management for linear logic proof search. In R. Dyckhoff,
H. Herre, and P. Schroeder-Heister, editors, Proceedings of the 5th In-
ternational Workshop on Extensions of Logic Programming, pages 67–81,
Leipzig, Germany, March 1996. Springer-Verlag LNAI 1050.

[2] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient re-
source management for linear logic proof search. Theoretical Computer
Science, 232(1–2):133–163, February 2000. Special issue on Proof Search
in Type-Theoretic Languages, D. Galmiche and D. Pym, editors.

[3] James Harland and David J. Pym. Resource distribution via Boolean
constraints. In W. McCune, editor, Proceedings of the 14th Interna-
tional Conference on Automated Deduction (CADE-14), pages 222–236,
Townsville, Australia, July 1997. Springer Verlag LNCS 1249.

[4] James Harland and David J. Pym. Resource distribution via Boolean
constraints. ACM Transactions on Computational Logic, 4(1):56–90, 2003.

[5] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory,
Design, and Implementation. PhD thesis, University of Pennsylvania, De-
partment of Computer and Information Science, 1994.

[6] Joshua S. Hodas, Pablo López, Jeffrey Polakow, Lubomira Stoilova,
and Ernesto Pimentel. A tag-frame system of resource management
for proof search in linear-logic programming. In J. Bradfield, edi-
tor, Proceedings of the 16th International Workshop on Computer Science
Logic (CSL’02), pages 167–182, Edinburgh, Scotland, September 2002.
Springer Verlag LNCS 2471.

LECTURE NOTES OCTOBER 17, 2006

Resource Management L15.11

[7] Joshua S. Hodas and Dale Miller. Logic programming in a fragment
of intuitionistic linear logic. In Proceedings of the 6th Annual Symposium
on Logic in Computer Science (LICS’91), pages 32–42, Amsterdam, The
Netherlands, July 1991. IEEE Computer Society Press.

[8] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–365,
1994.

[9] Pablo López and Jeffrey Polakow. Implementing efficient resource
management for linear logic programming. In Franz Baader and An-
drei Voronkov, editors, Proceedings of the 11th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’04),
pages 528–543, Montevideo, Uruguay, March 2005. Springer Verlag
LNCS 3452.

LECTURE NOTES OCTOBER 17, 2006

L15.12 Resource Management

LECTURE NOTES OCTOBER 17, 2006

15-819K: Logic Programming

Lecture 16

Substitution Semantics

Frank Pfenning

October 24, 2006

In this lecture we introduce a semantics with an explicit substitution, in
preparation for presenting various program analyses later. The semantics
will have the property that its goals appear exactly as in the original pro-
grams, with a separate substitution as part of the judgment. We also re-
viewed potential project areas during lecture, which is not represented in
these notes.

16.1 Semantic Levels

When designing a program analysis we need to consider which level of se-
mantic description is appropriate. This is relevant both for designing and
proving the correctness of the analysis, which could be either simple or
difficult, depending on our starting point. By the “level of semantic de-
scription” we mean here the spectrum from the logical semantics (in which
we can only talk about truth), through one where subgoal order is explicit,
to one with a failure continuation. An additional dimension is if a substi-
tution is explicit in the semantics.

Which kind of semantics is appropriate, for example, for defining mode
analysis? We would like to stay as high-level as possible, while still being
able to express the property in question. Because mode analysis depends
on subgoal order, one would expect to make subgoal order explicit. More-
over, since groundedness is a property of the substitution that is applied,
we also should make a substitution explicit during computation. On the
other hand, modes do not interact with backtracking, so we do not expect
to need a failure continuation.

We take here a slight shortcut, using a semantics with an explicit sub-
stitution, but not a subgoal stack. Of course, it is possible to give such a

LECTURE NOTES OCTOBER 24, 2006

L16.2 Substitution Semantics

semantics as well. Omitting the subgoal stack has the advantage that we
can relatively easily talk about the successful return of a predicate.

16.2 A Substitution Semantics

The semantics we give takes a goal G under a substitution τ . It produces a
substitution θ with the invariant that Gτθσ for any grounding substitution
σ. We define it on the fully residuated form, where for every predicate p

there is exactly one clause, and this clause has the form ∀x. p(x)← G.
In the judgment τ ` G / θ we maintain the invariant that dom(τ) ⊇

FV(G) and that Gτθ true where we mean that there is a proof paramet-
ric in the remaining free variables. Moreover, θ substitutes only for logic
variables X.

An important point1 is that τ should substitute exactly for the originally
quantified variables of G, and not for logic variables introduced during the
computation. This is the role of θ which substitutes only for logic variables.
The rule for atomic predicates is one place where this is important.

(∀x. p(x)← G) ∈ Γ tτ/x ` G / θ

τ ` p(t) / θ

We see that, indeed, the substitution on the premise accounts for all vari-
ables in G by the assumption of a closed normal form for programs.

The rule for conjunction presumes a subgoal order via the threading of
θ1, without using a subgoal stack.

τ ` G1 / θ1 τ [θ1] ` G2 / θ2

τ ` G1 ∧G2 / θ1θ2

Here we have used a variant of the composition operator in order to main-
tain our invariant on the input substitution. τ [θ1] applies θ1 to every ele-
ment of τ , but does not extend it. That is,

(t1/x1, . . . , tn/xn)[θ] = (t1[θ]/x1, . . . , tn[θ]/xn)

Truth is straightforward, as are the rules for disjunction and falsehood.

τ ` > / (·)

τ ` G1 / θ

τ ` G1 ∨G2 / θ

τ ` G2 / θ

τ ` G1 ∨G2 / θ
no rule for
τ ` ⊥ /

1I missed this point in lecture, which is why the system I gave did not work quite as well
to prove the correctness of mode analysis.

LECTURE NOTES OCTOBER 24, 2006

Substitution Semantics L16.3

The existential quantifier introduces a fresh logic variable X. This logic
variable can somehow “escape” in that it may occur in the domain or co-
domain θ. Intuitively, this makes sense because a logic variable that is not
instantiated during the solution of G will remain after success.

X 6∈ FV(τ) τ,X/x ` G / θ

τ ` ∃x.G / θ

Finally, equality reduces to unification.

tτ
.
= sτ | θ

τ ` t
.
= s / θ

16.3 Correctness

The substitution semantics from the previous section is sound and com-
plete in relation to the logical semantics of truth. First, the soundness. As
remarked above, truth of a proposition with free variables is defined para-
metrically. That is, there must be one deduction with free variables every
ground instance of which is true under the usual ground interpretation.

Theorem 16.1 If τ ` G / θ for dom(τ) ⊇ FV(G) then Gτθ true .

Proof: By induction on the deduction D of τ ` G / θ. For unification, we
rely on soundness of unification. 2

Completeness follows the usual pattern of lifting to deduction with free
variables.

Theorem 16.2 If Gτσ true where dom(τ) ⊇ FV(G) and cod(σ) = ∅ then
τ ` G / θ and σ = θσ′ for some θ and σ′.

Proof: By induction on the deduction of Gτσ θ. For unification we invoke
the property that unification returns a most general unifier. 2

16.4 An Asynchronous Substitution Semantics

Instead of giving substitution on goals for the residuated semantics, we can
also give it directly on programs and goals if a normal form for programs
is not desired or needed. There will be two judgments: τ ` A / θ where A

functions as a goal, and τ ;A� P / θ where A is formula under focus.

LECTURE NOTES OCTOBER 24, 2006

L16.4 Substitution Semantics

τ ` A1 / θ1 τ [θ1] ` A2 / θ2

τ ` A1 ∧A2 / θ1θ2 τ ` > / (·)

omitted here
τ ` A1 ⊃ A2 /

omitted here
τ ` ∀x.A /

τ ;A� P / θ A ∈ Γ

τ ` P / θ

τ ;A1 � P / θ

τ ;A1 ∧A2 � P / θ

τ ;A2 � P / θ

τ ;A1 ∧A2 � P / θ
no rule for

τ ;> � P /

X /∈ FV(τ) (τ,X/x);A� P / θ

τ ;∀x.A� P / θ

P ′τ
.
= Pτ | θ

τ ;P ′ � P / θ

τ ;A1 � P / θ1 τ [θ1] ` A2 / θ2

τ ;A2 ⊃ A1 � P / θ1θ2

We have not treated here implication and universal quantification as a
goal. Implication is straightforward (see Exercise 16.1). Universal quantifi-
cation in goals (which we have mostly avoided so far) creates difficulties
for unification and is left to a future lecture.

The correctness theorem for this version of the semantics is left to Exer-
cise 16.2.

16.5 Exercises

Exercise 16.1 Extend the substitution semantics to permit dynamic assumptions
Γ and goals of the form A1 ⊃ A2. Take care to account for the possibility that that
dynamic assumptions may contain free variables.

Exercise 16.2 State and prove the correctness theorems for the asynchronous sub-
stitution semantics.

LECTURE NOTES OCTOBER 24, 2006

15-819K: Logic Programming

Lecture 17

Mode Checking

Frank Pfenning

October 26, 2006

In this lecture we present modes to capture directionality in logic programs.
Mode checking helps to catch programming errors and also allows for more
efficient implementation. It is based on a form of abstract interpretation
where substitutions are approximated by a two-element lattice: completely
unknown terms, and terms known to be ground.

17.1 Modes

We have already informally used modes in the discussion of logic programs.
For example, we can execute certain predicates in multiple directions, but
this is impossible in other directions. We use modes + for input, - for output
and * for bi-directional arguments that are not designated as input or output.

We define the meaning as follows:

• Input arguments (+) must be ground when a predicate is invoked. It
is an error if the mode analysis cannot establish this for a call to a
predicate.

• Output arguments (-) must be ground when a predicate succeeds. It
is an error if the mode analysis cannot establish this for the definition
of a predicate.

From this we can deduce immediately:

• Input arguments (+) can be assumed to be ground when analyzing the
definition of a predicate.

LECTURE NOTES OCTOBER 26, 2006

L17.2 Mode Checking

• Output arguments (-) can be assumed to be ground after a call to a
predicate returns.

As an example, we return to our old program for addition.

plus(z, N, N).

plus(s(M), N, s(P)) :- plus(M, N, P).

First we check the mode

plus(+, +, -)

Consider the first clause, plus(z, N, N). We are permitted to assume that
the first two argument are ground, hence N is ground. We have to show the
third argument, N is ground, which we just established. Therefore, the first
clause is well-moded.

Looking at the head of the second clause, we may assume that M and
N are ground. We have to eventually show the s(P) will be ground upon
success. Now we analyze the body of the clause, plus(M, N, P). This call
is well-moded, because both M and N are known to be ground. Conversely,
we may now assume that the output argument P is ground. Consequently
s(P) is ground as required and the second clause is well-moded. Hence the
definition of plus has the indicated mode.

I suggest you walk through showing that plus as has modes

plus(+, -, +)

plus(-, +, +)

which are two ways to calculate the difference of two numbers.
On the other hand, it does not have mode

plus(+, -, -)

because, for example, plus(z, N, P) succeeds without grounding either
the second or third argument.

Modes are useful for a variety of purposes. First of all, they help to catch
program errors, just like types. If a predicate does not satisfy an expected
mode, it is likely a bug. This can happen fairly easily when names of free
variables in clauses are mistyped. It is standard practice for Prolog compil-
ers to produce a warning if a variable is used only once in a clause, under
the assumption that it is a likely source of bugs. Unfortunately, this pro-
duces many false positives on correct programs. Mode errors are a much
more reliable indication of bugs.

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.3

Secondly, modes can be used to produce more efficient code in a com-
piler, for example, by optimizing away occurs-checks (presuming you are
interested in sound unification, as you should be), or by producing more
efficient code for matching a goal against clause heads.

Thirdly, modes are helpful as a precondition for other analyses, such as
termination analysis. For example, the nat predicate defined by

nat(s(N)) :- nat(N).

nat(z).

will terminate if the argument is ground, but diverge if the argument is a
variable.

17.2 Semantic Levels

As laid out in the previous lecture, we need to consider which kind of se-
mantics is appropriate for defining mode analysis? We would like to stay
as high-level as possible, while still being able to express the property in
question. Because mode analysis depends on subgoal order, one would
expect to make subgoal order explicit. Moreover, since groundedness is a
property related to the substitution that is applied, we also should make
a substitution explicit during computation. On the other hand, modes do
not interact with backtracking, so we don’t expect to need a failure contin-
uation.

We take here a slight shortcut, using a semantics with an explicit substi-
tution, but not a subgoal stack. The resulting soundness property for mode
analysis is not as strong as we may wish, as discussed in Exercise 17.1, but
it is a bit easier to manage because it is easier to understand the concept of
a successful return of a predicate call.

17.3 A Substitution Semantics

The semantics we gave in the previous lecture takes a goal G under a sub-
stitution τ . It produces a substitution θ with the invariant that Gτ [θσ] for
any grounding substitution σ. We define it on the fully residuated form,
where for every predicate p there is exactly one clause, and this clause has
the form ∀x,y, z. p(x,y, z) ← G where x are the input arguments, y are the
bi-directional arguments, and z are the output arguments of p. We have
collected them into left-to-right form only for convenience, although this
is probably also good programming practice. The rules are summarized in
Figure 1.

LECTURE NOTES OCTOBER 26, 2006

L17.4 Mode Checking

τ ` G1 / θ1 τ [θ1] ` G2 / θ2

τ ` G1 ∧G2 / θ1θ2 τ ` > / (·)

(∀x,y, z. p(x,y, z) ← G) ∈ Γ tτ/x, rτ/y, sτ/z ` G / θ

τ ` p(t, r, s) / θ

τ ` G1 / θ

τ ` G1 ∨G2 / θ

τ ` G2 / θ

τ ` G1 ∨G2 / θ
no rule for
τ ` ⊥ /

X 6∈ FV(τ) τ,X/x ` G / θ

τ ` ∃x.G / θ

tτ
.
= sτ | θ

τ ` t
.
= s / θ

Figure 1: Substitution Semantics

17.4 Abstract Substitutions

One common way of designing a program analysis is to construct and ab-
straction of a concrete domain involved in the operational semantics. Here,
we abstract away from the substitution terms, tracking only if the terms are
ground g or unknown u. They are related by an information ordering in the
sense that u has no information and g is the most information we can have
about a term. We write this in the form of a partial order which, in this case,
is rather trivial. u

g

We write g ≤ u. If we are lower in this partial order we have more informa-
tion; higher up we have less. This order is consistent with the interpretation
of g and u as sets of terms: g is the set of ground terms, which is a subset of
the set of all terms u.

Other forms of abstract interpretation, or a more detailed mode analy-
sis, demands more complex orderings. We will see in the analysis which
form of operations are required to be defined on the structure.

Abstract substitutions now have the form

τ̂ ::= · | τ̂ , u/x | τ̂ , g/x.

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.5

An abstract substitution τ̂ approximates an actual substitution τ if they have
the same domain, and if whenever g/x ∈ τ̂ it is indeed the case that t/x ∈ τ

and FV(t) = ∅. For variables marked as unknown in τ̂ there is no require-
ment placed on τ . We write τ̂ 4 τ if τ̂ approximates τ .

17.5 Mode Analysis Judgment

Now we abstract from the concrete operational semantics to one where we
just carry abstract substitutions. The parallel nature of the operational and
analysis rules leads to a mangeable proof of soundness of the analysis. Of
course, completeness can not hold: there will always be programs that
will respect modes at run-time, but fail the decidable judgment of well-
modedness defined below (see Exercise 17.2).

At the top level we check each predicate separately. However, we as-
sume that modes for all predicates are declared simultaneously, or at least
that the modes of a predicate are defined before they are used in another
predicate. The main judgment is

τ̂ ` G / σ̂

where dom(τ) ⊇ FV(G) and τ̂ ≥ σ̂. The latter is interpreted pointwise,
according to the partial order among the abstract elements. So τ̂ and σ̂

have the same domain, and σ̂ preserves all g/x in τ̂ , but may transform
some u/x into g/x.

When analyzing the definition of a predicate we are allowed to assume
that all input arguments are ground and we have to show that upon suc-
cess, the output arguments are ground. We do not assume or check any-
thing about the bi-directional arguments.

(∀x,y, z. p(x,y, z) ← G) ∈ Γ
g/x,u/y,u/z ` G(x,y, z) / (g/x, /y,g/z)

p wellmoded

The judgment τ̂ ` t ground checks that all terms in t are ground assuming
the information given in τ̂ .

g/x ∈ τ̂

τ̂ ` x ground

τ̂ ` t ground

τ̂ ` f(t) ground

τ̂ ` (·) ground

τ̂ ` t ground τ̂ ` t ground

τ̂ ` (t, t) ground

LECTURE NOTES OCTOBER 26, 2006

L17.6 Mode Checking

Besides the abstraction, the gap to bridge between the operational and
abstract semantics is only that fact in τ ` G / θ the output θ is an increment:
we apply it to τ to obtain the substitution under which G is true. σ̂ on the
other hand is a completed approximate substitution. This is reflected in the
following property we show in the end.

If τ ` G / θ and τ̂ 4 τ and τ̂ ` G / σ̂ then σ̂ 4 τ [θ].

Atoms. An atomic goal represents a procedure call. We therefore have to
show that the input arguments are ground and we are permitted to assume
that the output arguments will subsequently be ground.

τ̂ ` t ground τ̂ ` s / σ̂

τ̂ ` p(t, r, s) / σ̂

The judgment τ̂ ` s / σ̂ refines the information in τ̂ by noting that all
variables in s can also be assumed ground.

(τ̂1, /x, τ̂2) ` x / (τ̂1, g/x, τ̂2)

τ̂ ` s / σ̂

τ̂ ` f(s) / σ̂

τ̂ ` (·) / τ̂

τ̂1 ` s / τ̂2 τ̂2 ` s / τ̂3

τ̂1 ` (s, s) / τ3

Conjunction. Conjunctions are executed from left-to-right, so we propa-
gate the mode information in the same order.

τ̂1 ` G1 / τ̂2 τ̂2 ` G2 / τ̂3

τ̂1 ` G1 ∧G2 / τ̂3

Truth. Truth does not affect any variables, so the modes are simply prop-
agated unchanged.

τ̂ ` > / τ̂

Disjunction. Disjunction represents an interesting challenge. For a goal
G1 ∨G2 we do not know which subgoal will succeed. Therefore a variable

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.7

is only definitely known to be ground after execution of the disjunction, if
it is known to be ground in both cases.

τ̂ ` G1 t σ̂1 τ̂ ` G2 t σ̂2

τ̂ ` G1 ∨G2 / σ̂1 t σ̂2

The least upper bound operation t is applied to two abstract substitutions
point-wise, and on abstract terms it is defined by

g t g = g

g t u = u

u t g = u

u t u = u

This is a common pattern in logic program analysis, where the least upper
bound operations comes from the order on the abstract elements. To make
sure that such a least upper bound always exist we generally stipulate that
the order of abstract elements actually constitutes a lattice so that least up-
per bounds (t) and greatest lower bounds (u) of finite sets always exist. As
a special case, the least upper bound of the empty set is the bottom element
of the lattice, usually denoted by ⊥ or 0. We use the latter because ⊥ is
already employed with its logical meaning. Here, the bottom element is g

for an individual element, and g/x for a substitution.

Falsehood. In the operational semantics there is no rule for proving false-
hood. In the mode analysis, however, we need a rule for handling false-
hood, since analysis should not fail unless there is a mode error. Recall that
we need for the output of mode analysis to approximate the output substi-
tution τ [θ] if τ ` G / θ. But G = ⊥ can never succeed, so this requirement is
vacuous. Consequently, is it safe to pick the bottom element of the lattice.

dom(τ̂) = x

τ̂ ` ⊥ / (g/x)

Existential. Solving an existential creates a new logic variable. This is still
a free variable, so we mark its value as not known to be ground.

(τ̂ , u/x) ` G / (σ̂, /x)

τ̂ ` ∃x.G / σ̂

Since there is no requirement that existential variables eventually become
ground, we do not care what is known about the substitution term for x

upon the successful completion of G.

LECTURE NOTES OCTOBER 26, 2006

L17.8 Mode Checking

Equality. When encountering an equality we need to descend into the
terms, abstractly replaying unification, to approximate the resulting substi-
tution. We therefore distinguish various cases. Keep in mind that analysis
should always succeed, even if unification fails at runtime, which gives us
more cases to deal with than one would initially expect. We write τ̂ + g/x

for the result of setting the definition for x in τ̂ to g.

τ̂ ` s ground

τ̂ ` x
.
= s / τ̂ + g/x

g/x ∈ τ̂

τ̂ 6` s ground τ̂ ` s / σ̂

τ̂ ` x
.
= s / σ̂

u/x ∈ τ̂

τ̂ 6` s ground

τ̂ ` x
.
= s / τ̂

τ̂ ` t ground

τ̂ ` t
.
= y / τ̂ + g/y

g/y ∈ τ̂

τ̂ 6` t ground τ̂ ` t / σ̂

τ̂ ` t
.
= y / σ̂

u/y ∈ τ̂

τ̂ 6` t ground

τ̂ ` t
.
= y / τ̂

τ̂ ` t
.
= s / σ̂

τ̂ ` f(t)
.
= f(s) / σ̂

f 6= g dom(τ̂) = x

τ̂ ` f(t)
.
= g(s) / (g/x)

τ̂1 ` t
.
= s / τ̂2 τ̂2 ` t

.
= s / τ̂3

τ̂1 ` (t, t)
.
= (s, s) / τ̂3 τ̂ ` (·)

.
= (·) / τ̂

dom(τ̂) = x

τ̂ ` (·)
.
= (s, s) / (g/x)

dom(τ̂) = x

τ̂ ` (t, t)
.
= (·) / (g/x)

The first and second lines overlap in the sense that for some equations,
more than one rule applies. However, the answer is the same in either
case. We could resolve the ambiguity by requiring, for example, that in the
second line t is not a variable, that is, of the form f(t).

17.6 Soundness

Next we have to prove soundness of the analysis. First we need a couple
of lemmas regarding the term-level judgments. One can view these as en-
coding what happens when an approximate substitution is applied, so we
refer to them as the first and second approximate substitution lemma. To
see how they arise you might analyze the soundness proof below first.

Lemma 17.1 If τ̂ ` t ground and τ̂ 4 τ and then tτ ground .

Proof: By induction on the structure of D of τ̂ ` t ground . 2

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.9

Lemma 17.2 If τ̂ ` s / σ̂ and τ̂ 4 τ and sτ [θ] ground then σ̂ 4 τ [θ].

Proof: By induction on the structure of D of τ̂ ` s / σ̂. 2

Theorem 17.3 If τ ` G / θ and τ̂ 4 τ and τ̂ ` G / σ̂ then σ̂ 4 τ [θ].

Proof: By induction on the structure of D of τ ` G / θ, applying inversion
to the given mode derivation in each case.

Case: D =
(∀x,y, z. p(x,y, z) ← G) ∈ Γ (t+τ/x, r∗τ/y, s−τ/z) ` G / θ

τ ` p(t+, r∗, s−) / θ
.

τ̂ ` p(t+, r∗, s−) / σ̂ Assumption
τ̂ ` t

+ ground and
τ̂ ` s

− / σ̂ By inversion
τ̂ 4 τ Assumption
t
+τ ground By approx. subst. lemma

(g/x,u/y,u/z) 4 (t+τ/x, r∗τ/y, s−τ/z) From previous line
p wellmoded Assumption
g/x,u/y,u/z ` G / (g/x, /y,g/z) By inversion
(g/x, /y,g/z) 4 (t+τθ/x, r∗τθ/y, s−τθ/z) By ind.hyp.
s
−τθ ground By defn. of 4

σ̂ 4 τθ By approx. subst. lemma

Case: D =
τ ` G1 / θ1 τθ1 ` G2 / θ2

τ ` G1 ∧G2 / θ1θ2

.

τ̂ ` G1 ∧G2 / σ̂2 Assumption
τ̂ ` G1 / σ̂1 and
σ̂1 ` G2 / σ̂2 for some σ̂1 By inversion
τ̂ 4 τ Assumption
σ̂1 4 τ [θ1] By ind.hyp.
σ̂2 4 (τ [θ1])[θ2] By ind.hyp.
σ̂2 4 τ [θ1θ2] By assoc of composition

Case: D =
τ ` > / (·)

.

τ̂ ` > / σ̂ Assumption
σ̂ = τ̂ By inversion
τ̂ 4 τ Assumption
σ̂ 4 τ [·] By identity of (·)

LECTURE NOTES OCTOBER 26, 2006

L17.10 Mode Checking

Case: D =
τ ` G1 / θ

τ ` G1 ∨G2 / θ
.

τ̂ ` G1 ∨G2 / σ̂ Assumption
τ̂ ` G1 / σ̂1 and
τ̂ ` G2 / σ̂2 for some σ̂1, σ̂2 with σ̂ = σ̂1 t σ̂2 By inversion
τ̂ 4 τ Assumption
σ̂1 4 τ [θ] By ind.hyp.
σ̂1 t σ̂2 4 τ [θ] By property of least upper bound

Case: D =
τ ` G2 / θ

τ ` G1 ∨G2 / θ
. Symmetric to the previous case.

Case: τ ` ⊥ / θ. There is no rule to conclude such a judgment. Therefore
the property holds vacuously.

Case: D =
τ,X/x ` G / θ X /∈ FV(τ)

τ ` ∃x.G / θ
.

τ̂ ` ∃x.G / σ̂ Assumption
τ̂ , u/x ` G / (σ̂, /x) By inversion
τ̂ 4 τ Assumption
(τ̂ , u/x) 4 (τ,X/x) By defn. of 4

(σ̂, /x) 4 (τ,X/x)[θ] By ind.hyp.
σ̂ 4 τ [θ] By prop. of subst. and approx.

Case: D =
tτ

.
= sτ | θ

τ ` t
.
= s / θ

. This case is left to the reader (see Exercise 17.3).

2

17.7 Exercises

Exercise 17.1 One problem with well-modedness in this lecture is that we only
prove that if a well-moded query succeeds then the output will be ground. A
stronger property would be that during the execution of the program, every goal
and subgoal we consider will be well-moded. However, this requires a transition
semantics and a different soundness proof.

Write a suitable operational semantics and prove soundness of mode checking
in the sense sketched above. This is a kind of mode preservation theorem, analogous
to a type preservation theorem.

LECTURE NOTES OCTOBER 26, 2006

Mode Checking L17.11

Exercise 17.2 Give a program that respects modes at run-time in the sense that

• input arguments (+) are always ground when a predicate is invoked, and

• output arguments (-) are always ground when a predicate succeeds,

and yet is not well-moded according to our analysis.

Exercise 17.3 Complete the proof of soundness of mode analysis by giving the case
for unification. If you need a new lemma in addition to the approximate substitu-
tion lemmas, carefully formulate and prove them.

LECTURE NOTES OCTOBER 26, 2006

L17.12 Mode Checking

LECTURE NOTES OCTOBER 26, 2006

15-819K: Logic Programming

Lecture 18

Proof Terms

Frank Pfenning

October 31, 2006

In this lecture we will substantiate an earlier claim that logic programming
not only permits the representation of specifications and the implementa-
tion of algorithm, but also the realization of proofs of correctness of algo-
rithms. We will do so by first showing how deductions can be represented
as terms, so-called proof terms. We also discuss the problems of checking
the validity of deductions, which amounts to type checking the terms that
represent them.

18.1 Deductions as Terms

In logic programming we think of computation as proof search. However,
so far search only returns either success together with an answer substitu-
tion, fails, or diverges. In the case of success it is reasonable to expect that
the logic programming engine could also return a deduction of the instan-
tiated goal. But this raises the question of how to represent deductions. In
the traditional logic programming literature we will find ideas such as a
list of the rules that have been applied to solve a goal. There is, however, a
much better answer. We can think of an inference rule as a function which
takes deductions of the premisses to a deduction of the conclusion. Such a
function is a constructor for proof terms. For example, when interpreting

plus(z, N,N)
pz

plus(M,N,P)

plus(s(M),N, s(P))
ps

we extract two constructors

pz : plus(z,N,N)
ps : plus(M,N,P)→ plus(s(M),N, s(P)).

LECTURE NOTES OCTOBER 31, 2006

L18.2 Proof Terms

The only unusual thing about these constructors is their type. The type of
pz, for example, is a proposition.

The idea that propositions can be types is a crucial observation of the
Curry-Howard isomorphism in functional programming that also identi-
fies proofs (of a proposition) with programs (of the correspending type).
Here, the correspondence of propositions with types is still perfect, but
proofs are not programs (which, instead, or are given by inference rules).

As an example of how a complete proof is interpreted as a term, con-
sider the computation of 2 + 2 = 4.

plus(0, 2, 2)
pz

plus(1, 2, 3)
ps

plus(2, 2, 4)
ps

Here we have abbreviated z = 0, s(z) = 1, This deduction becomes the
very simple term

ps(ps(pz)).

Our typing judgment should be such that

ps(ps(pz)) : plus(2, 2, 4)

so that a proposition acts as the type of its proofs.
As a slightly more complex example, consider multiplication

times(z, N, z)
tz

times(M,N,P) plus(P,N,Q)

times(s(M),N,Q)
ts

which yields the following constructors

tz : times(z, N, z)
ts : times(M,N,P), times(P,N,Q)→ times(M,N,Q).

Now the deduction that 2 ∗ 2 = 4, namely

times(0, 2, 0)
tz

plus(0, 2, 2)
pz

times(1, 2, 2)
ts

plus(0, 2, 2)
pz

plus(1, 2, 3)
ps

plus(2, 2, 4)
ps

times(2, 2, 4)
ts

LECTURE NOTES OCTOBER 31, 2006

Proof Terms L18.3

becomes the term

ts(ts(tz, pz), ps(ps(pz))) : times(2, 2, 4).

The tree structure of the deduction is reflected in the corresponding tree
structure of the term.

18.2 Indexed Types

Looking at our example signature,

pz : plus(z, N,N)
ps : plus(M,N,P)→ plus(s(M),N, s(P))

tz : times(z, N, z)
ts : times(M,N,P), times(P,N,Q)→ times(M,N,Q)

we can observe a new phenomenon. The types of our constructors contain
terms, both constants (such as z) and variables (such as M , N , or P). We say
that plus is a type family indexed by terms. In general, under the propositions-
as-types interpretation, predicates are interpreted type families indexed by
terms.

The free variables in the declarations are interpreted schematically, just
like in inference rules. So pz is really a family of constants, indexed by N .
This has some interesting consequences. For example, we found earlier
that

ps(ps(pz)) : plus(2, 2, 4).

However, we can also check that

ps(ps(pz)) : plus(2, 3, 5).

In fact, our type system will admit a most general type:

ps(ps(pz)) : plus(s(s(z)),N, s(s(N))).

This schematic type captures all types of the term on the left, because any
type for ps(ps(pz)) is an instance of plus(s(s(z)),N, s(s(N))).

18.3 Typing Rules

In order to write down the typing rules, it is convenient to make quantifi-
cation over schematic variables in a indexed type declaration explicit. We

LECTURE NOTES OCTOBER 31, 2006

L18.4 Proof Terms

write ∀x:τ for quantification over a single variable, and following our gen-
eral notational convention, ∀x:τ for a sequence of quantifiers. We have
already introduced quantified propositions, so we emphasize its role as
quantifying over the schematic variables of a proposition viewed as a type.
The example of addition would be written as

z : nat

s : nat→ nat

pz : ∀N :nat. plus(z, N,N)
ps : ∀M :nat.∀N :nat.∀P :nat. plus(M,N,P)→ plus(s(M),N, s(P))

We call such explicitly quantified types dependent types. Unlike other for-
mulations (for example, in the LF logical framework), but similarly to our
treatment of polymorphism, the quantifiers do not affect the term language.
We write ‘∀’ to emphasize the logical reading of the quantifiers; in a fully
dependent type theory they would be written as ‘Π’.

There are a many of similarities between polymorphic and dependent
types. We will see that in addition to the notation, also the typing rules
are analogous. Nevertheless, they are different concepts: polymorphism
quantifies over types, while dependency quantifies over terms. We review
the rule for polymorphic typing.

dom(θ̂) = α

f : ∀α.σ → τ ∈ Σ ∆ ` t : σθ̂

∆ ` f(t) : τ θ̂

Recall that θ̂ is a substitution of types for type variables, and that ∆ contains
declarations x:τ as well as α type .

The rule for dependent types is analogous, using ordinary substitutions
instead of type substitution.

dom(θ) = x

c : ∀x:τ .Q→ P ∈ Σ ∆ ` t : Qθ

∆ ` c(t) : Pθ

We have written P and Q instead of τ and σ to emphasize the interpreta-
tion of the types as propositions.

If we require θ to be a ground substitution (that is, cod(θ) = ∅), then we
can use this rule to determine ground typings such as

ps(ps(pz)) : plus(2, 2, 4).

LECTURE NOTES OCTOBER 31, 2006

Proof Terms L18.5

If we allow free variables, that is, cod(θ) = dom(∆), then we can write out
schematic typings, such as

n:nat ` ps(ps(pz)) : plus(s(s(z)), n, s(s(n))).

In either case we want the substitution to be well-typed. In the presence of
dependent types, the formalization of this would lead us a bit far afield, so
we can think of it just as before: we always substitute a term of type τ for a
variable of type τ .

18.4 Type Checking

Ordinarily in logic programming a query is simply a proposition and the
result is an answer substitution for its free variables. When we have proof
terms we can also ask if a given term constitutes a proof of a given propo-
sition. We might write this as

?- t : P.

where t is a term representing a purported proof and P is a goal proposi-
tion. From the typing rule we can see that type-checking comes down to
unification. We can make this more explicit by rewriting the rule:

dom(ρ) = x

c : ∀x:τ .Q→ P ′ ∈ Σ P ′ρ
.
= P | θ ∆ ` t : Qρθ

∆ ` c(t) : P

Here ρ is a renaming substituting generating fresh logic variables for the
bound variables x.

Because a constant has at most one declaration in a signature, and uni-
fication returns a unique most general unifier, the type-checking process is
entirely deterministic and will always either fail (in which case there is no
type) or succeed. We can even leave P as a variable and obtain the most
general type for a given term t.

Checking that a given term represents a valid proof can be useful in a
number of situations. Some practical scenarios where this has been applied
is proof-carrying code and proof-carrying authorization. Proof-carrying code is
the idea that we can equip a piece of mobile code with a proof that it is
safe to execute. A code recipient can check the validity of the proof against
the code and then run the code without further run-time checks. Proof-
carrying authorization is a similar idea, except that the proof is used to

LECTURE NOTES OCTOBER 31, 2006

L18.6 Proof Terms

convince a resource monitor that a client is authorized for access. Please
see the section on historical notes for some references on these applications
of logic programming.

18.5 Proof Search

Coming back to proof search: we would like to instrument our interpreter
so it returns a proof term (as well as an answer substitution) when it suc-
ceeds. But the exact rule for type-checking with a slightly different inter-
pretation on modes, will serve that purpose.

dom(ρ) = x

c : ∀x:τ .Q→ P ′ ∈ Σ P ′ρ
.
= P | θ ∆ ` t : Qρθ

∆ ` c(t) : P

Above, we thought of c(t) and therefore t as given input, so this was a
rule for type-checking. Now we think of t as an output, produced by proof
search for the premiss, which then allows us to construct c(t) as an output
in the conclusion. Now the rule is non-deterministic since we do not know
which rule for a given atomic predicate to apply, but for a given proof we
will be able to construct a proof term as an output.

We have not addressed here if ordinary untyped unification will be suf-
ficient for program execution (or, indeed, type-checking), or if unification
needs to be changed in order to take typing into account. After a consider-
able amount of technical work, we were able to show in the case of poly-
morphism that function symbols needed to be type preserving and clause
heads parametric for untyped unification to suffice. If we explicitly stratify
our language so that in a declaration c : ∀x:τ .Q → P ′ all the types τ have
no variables then the property still holds for well-typed queries; otherwise
it may not (see Exercise 18.1).

18.6 Meta-Theoretic Proofs as Relations

We now take a further step, fully identifying types with propositions. This
means that quantifiers in clauses can now range over deductions, and we
can specify relations between deductions. Deductions have now become
first-class.

There are several uses for first-class deductions. One is that we can now
implement theorem provers or decision procedures in a way that intrinsi-
cally guarantees the validity of generated proof objects.

LECTURE NOTES OCTOBER 31, 2006

Proof Terms L18.7

Another application is the implementation of proofs about the predi-
cates that make up logic programs. To illustrate this, we consider the proof
that the sum of two even numbers is even. We review the definitions:

even(z)
ez

even(N)

even(s(s(N)))
ess

so that the type declarations for proof constructors are

ez : even(z)
ess : even(N)→ even(s(s(N)))

pz : plus(z,N,N)
ps : plus(M,N,P)→ plus(s(M),N, s(P))

Theorem 18.1 For any m, n, and p, if even(m), even(n), and plus(m,n, p) then
even(p).

Proof: By induction on the structure of the deduction D of even(m).

Case: D =
even(z)

where m = z.

even(n) Assumption
plus(z, n, p) Assumption
n = p By inversion
even(p) Since n = p

Case: D =

D′

even(m′)

even(s(s(m′)))
where m = s(s(m′)).

plus(s(s(m′)), n, p) Assumption
plus(s(m′), n, p′) with p = s(p′) By inversion
plus(m′, n, p′′) with p′ = s(p′′) By inversion
even(p′′) By ind. hyp.
even(s(s(p′′))) By rule

2

LECTURE NOTES OCTOBER 31, 2006

L18.8 Proof Terms

The theorem and its proof involves four deductions:

D
even(m)

E
even(n)

F
plus(m,n, p)

G

even(p)

The theorem states that for any derivations D, E , and F there exists a de-
duction G. Using our newfound notation for proof terms we can write this
as

For every m, n, and p, and for every D : even(m), E : even(n), and
F : plus(m,n, p) there exists G : even(p).

If this course were about functional programming, we would ensure that
this theorem holds by exhibing a total function

eee : even(M)→ even(N)→ plus(M,N,P)→ even(P).

It is important that the function be total so that it is guaranteed to generate
an output deduction of even(P) for any combination of input deductions,
thereby witnessing its truth.

In logic programming, such functions are not at our disposal. But we
can represent the same information as a total relation

eee : even(M), even(N), plus(M,N,P), even(P)→ o.

The predicate symbol eee represents a four-place relation between deduc-
tions, where we consider the first three deductions as inputs and the last
one as an output.

In the next lecture we consider in some details what is required to verify
that this relation represents a meta-theoretic proof of the property that the
sum of two even number is even. Before we get to that, let us examine how
our careful, but informal proof is translated into a relation. We will try to
construct clauses for

eee(D,E,F,G)

where D : even(M), E : even(N), F : plus(M,N,P), and G : even(P). We
repeat the proof, analyzing the structure of D, E, F , and G. We highlight
the incremental construction of clauses for eee in interspersed boxes.

Case: D =
even(z)

ez where m = z.

LECTURE NOTES OCTOBER 31, 2006

Proof Terms L18.9

At this point we start to construct a clause

eee(ez, E, F,G)

because D = ez, and we do not yet know E, F , or G.

E : even(n) Assumption
F : plus(z, n, p) Assumption
F = pz and n = p By inversion

At this point we have some more information, namely F = pz. So
the partially constructed clause now is

eee(ez, E, pz, G).

G = E : even(p) Since n = p

Now we see that the output G is equal to the second input E.

eee(ez, E, pz, E)

This completes the construction of this clause. The second argu-
ment E is not analyzed and simply returned as G.

Case: D =

D′

even(m′)

even(s(s(m′)))
ess where m = s(s(m′)).

The partially constructed second clause now looks like

eee(ess(D′), E, F,G).

F : plus(s(s(m′)), n, p) Assumption
F = ps(F ′) where F ′ : plus(s(m′), n, p′) with p = s(p′) By inversion

Now we have
eee(ess(D′), E, ps(F ′), G)

replacing F above by ps(F ′).

F ′ = ps(F ′′) where F ′′ : plus(m′, n, p′′) with p′ = s(p′′) By inversion

LECTURE NOTES OCTOBER 31, 2006

L18.10 Proof Terms

In this step, the third argument has been even further refined to
ps(ps(F ′′)) which yields

eee(ess(D′), E, ps(ps(F ′′)), G).

G′ : even(p′′) By ind. hyp. on D′, E, and F ′′

An appeal to the induction hypothesis corresponds to a recursive
call in the definition of eee.

eee(ess(D′), E, ps(ps(F ′′)), G)← eee(D′, E, F ′′, G′)

The first three arguments of the recursive call correspond to the de-
ductions on which the induction hypothesis is applied, the fourth
argument is the returned deduction G′. The question of how we
construct the G still remains.

G = ess(G′) : even(s(s(p′′))) By rule ess applied to G′

Now we can fill in the last missing piece by incorporating the defi-
nition of G.

eee(ess(D′), E, ps(ps(F ′′)), ess(G′))← eee(D′, E, F ′′, G′)

In summary, the meta-theoretic proof is represented as the relation eee

shown below. We have named the rules defining eee for consistency, even
though it seems unlikely we will want to refer to these rules by name.

eee : even(M), even(N), plus(M,N,P), even(P)→ o.

eeez : eee(ez, E, pz, E).
eeess : eee(ess(D′), E, ps(ps(F ′′)), ess(G′))← eee(D′, E, F ′′, G′).

Each case in the definition of eee corresponds to a case in the inductive
proof, a recursive call corresponds to an appeal to the induction hypoth-
esis. A constructed term on an input argument of the clause head corre-
sponds to a case split on the induction variable or an appeal to inversion.
A constructed term in an output position of the clause head corresponds to
a rule application to generate the desired deduction.

It is remarkable how compact the representation of the informal proof
has become: just one line declaring the relation and two lines defining the
relation. This is in contrast to the informal proof which took up 11 lines.

LECTURE NOTES OCTOBER 31, 2006

Proof Terms L18.11

18.7 Verifying Proofs of Meta-Theorems

In the previous section we showed how to represent a proof of a theorem
about deductions as a relation between proofs. But what does it take to
verify that a given relation indeed represents a meta-theoretic proof of a
proposed theorem? A full treatment of this question is beyond the scope of
this lecture (and probably this course), but meta-logical frameworks such
as Twelf can indeed verify this. Twelf decomposes this checking into mul-
tiple steps, each making its own contribution to the overall verification.

1. Type checking. This guarantees that if eee(D,E,F,G) for deductions
D, E, F , and G is claimed, all of these are valid deductions. In partic-
ular, the output G will be acceptable evidence that P is even because
G : even(P).

2. Mode checking. The mode eee(+,+,+,−) guarantees that if the in-
puts are all complete (ground) deductions and the query succeeds,
then the output is also a complete (ground) deduction. This is impor-
tant because a free variable in a proof term represents an unproven
subgoal. Such deductions would be insufficient as evidence that P is
indeed even.

3. Totality checking. If type checking and mode checking succeeds, we
know that P is even if a query eee(D,E,F,G) succeeds for ground
D, E, F and free variable G. All that remains is to show that all such
queries succeed. We decompose this into two properties.

(a) Progress checking. For any given combination of input deduc-
tions D, E, and F there is an applicable clause and we either
succeed or at least can proceed to a subgoal. Because of this,
eee(D,E,F,G) can never fail.

(b) Termination checking. Any sequence of recursive calls will ter-
minate. Since queries can not fail (by progress) the only remain-
ing possibility is that they succeed, which is what we needed to
verify.

We have already extensively discussed type checking and mode check-
ing. In the next lecture we sketch progress checking. For termination check-
ing we refer to the literature in the historical notes below.

LECTURE NOTES OCTOBER 31, 2006

L18.12 Proof Terms

18.8 Polymorphism and Dependency

Because of the similarity of polymorphic and dependent types, and because
both have different uses, it is tempting to combine the two in a single lan-
guage. This is indeed possible. For example, if we would like to index a
polymorphic list with its length we could define

nat : type.

z : nat.

s : nat -> nat.

list : type,nat -> type.

nil : list(A,z).

cons : A,list(A,N) -> list(A,s(N)).

In the setting of functional programming, such combinations have been
thoroughly investigated, for examples, as fragments of the Calculus of Con-
structions. In the setting here we are not aware of a thorough study of either
type checking or unification. A tricky issue seems to be how much type in-
formation must be carried at run-time, during unification, especially if a
type variable can be instantiated by a dependent type.

18.9 Historical Notes

The notion of proof term originates in the so-called Curry-Howard iso-
morphism, which was noted for combinatory logic by Curry and Feys in
1956 [8] and for natural deduction by Howard in 1969 [10]. The empha-
sis in this work is on functional computation, by combinatory reduction
or β-reduction, respectively. The presentation here is much closer to the
LF logical framework [9] in which only canonical forms are relevant, and
which is entirely based on dependent types. We applied one main sim-
plification: because we restricted ourselves to the Horn fragment of logic,
proof terms contain no λ-abstractions. This in turn allows us to omit Π-
quantifiers without any loss of decidability of type checking, since type
inference can be achieved just by ordinary unification.

The combination of polymorphism and dependency is present in the
Calculus of Constructions [6]. Various fragments were later analyzed in
detail by Barendregt [2], including the combination of polymorphism with
dependent types. A modern version of the Calculus of Constructions is the
basis for the Coq theorem proving system.1

1http://coq.inria.fr/

LECTURE NOTES OCTOBER 31, 2006

Proof Terms L18.13

The use of explicit proof terms to certify the safety of mobile code goes
back to Necula and Lee [13, 12]. They used the LF logical framework with
some optimizations for proof representation. Proof-carrying authorization
was proposed by Appel and Felten [1] and then realized for the first time
by Bauer, Schneider, and Felten [5, 3]. It is now one of the cornerstones
of the Grey project [4] for universal distributed access control at Carnegie
Mellon University.

The technique of representing proofs of meta-theorems by relations is
my own work [14, 15], eventually leading to the Twelf system [17] which
has many contributors. Type reconstruction for Twelf was already sketched
in the early work [15], followed the first foray into mode checking and
termination checking [19] later extended by Pientka [18]. Totality check-
ing [21] was a further development of meta-proofs that were correct by
construction proposed by Schürmann [20]. The example in this lecture can
be easily verified in Twelf. For more on Twelf see the Twelf home page.2

Relational representation of meta-theory has recently been shown to be
sufficiently powerful to mechanize the theory of full-scale programming
languages (Typed Assembly Language [7] and Standard ML [11]). For
further references and a more general introduction to logical frameworks,
see [16].

18.10 Exercises

Exercise 18.1 We can translate the conditions on polymorphism, namely that that
term constructors be type-preserving and predicates be parametric, to conditions
on dependency. Give such a parallel definition.

Further, give examples that show the need for type information to be carried
during unification to avoid creating ill-typed terms if these conditions are violated.

Finally, discuss which of these, if any, would be acceptable in the case of depen-
dent types.

Exercise 18.2 Revisit the proof that the empty list is the right unit for append

(Exercise 3.5 from Assignment 2) and represent it formally as a relation between
deductions.

Exercise 18.3 Revisit the proof that addition is commutative (Exercise 3.4 from
Assignment 2) and represent it formally as a relation between deductions.

Exercise 18.4 Revisit the proof that append is associative (Exercise 3.6 from As-
signment 2) and represent it formally as a relation between deductions.

2http://www.twelf.org/

LECTURE NOTES OCTOBER 31, 2006

L18.14 Proof Terms

Exercise 18.5 If we do not want to change the logic programming engine to pro-
duce proof objects, we can transform a program globally by adding an additional
argument to every predicate, denoting a proof term.

Formally define this transformation and prove its correctness.

18.11 References

[1] Andrew W. Appel and Edward W. Felten. Proof-carrying authentica-
tion. In G. Tsudik, editor, Proceedings of the 6th Conference on Computer
and Communications Security, pages 52–62, Singapore, November 1999.
ACM Press.

[2] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky,
D. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, chapter 2, pages 117–309. Oxford University Press,
1992.

[3] Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization.
PhD thesis, Princeton University, November 2003.

[4] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Ja-
son Rouse, and Peter Rutenbar. Device-enabled authorization in the
Grey system. In Proceedings of the 8th Information Security Conference
(ISC’05), pages 431–445, Singapore, September 2005. Springer Verlag
LNCS 3650.

[5] Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A general
and flexible access-control system for the web. In Proceedings of the
11th USENIX Security Symposium, San Francisco, California, August
2002.

[6] Thierry Coquand and Gérard Huet. The calculus of constructions. In-
formation and Computation, 76(2/3):95–120, 1988.

[7] Karl Crary and Susmit Sarkar. Foundational certified code in a meta-
logical framework. ACM Transactions on Computational Logic, 2006. To
appear.

[8] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amster-
dam, 1958.

[9] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

LECTURE NOTES OCTOBER 31, 2006

Proof Terms L18.15

[10] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press,
1980. Hitherto unpublished note of 1969, rearranged, corrected, and
annotated by Howard.

[11] Daniel K. Lee, Karl Crary, and Robert Harper. Mechanizing the
metatheory of Standard ML. Technical Report CMU-CS-06-138, Car-
negie Mellon University, 2006.

[12] George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Con-
ference Record of the 24th Symposium on Principles of Programming Lan-
guages (POPL’97), pages 106–119, Paris, France, January 1997. ACM
Press.

[13] George C. Necula and Peter Lee. Safe kernel extensions without run-
time checking. In Proceedings of the Second Symposium on Operating
System Design and Implementation (OSDI’96), pages 229–243, Seattle,
Washington, October 1996.

[14] Frank Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Sci-
ence, pages 313–322, Pacific Grove, California, June 1989. IEEE Com-
puter Society Press.

[15] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[16] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, chapter 17, pages
1063–1147. Elsevier Science and MIT Press, 2001.

[17] Frank Pfenning and Carsten Schürmann. System description: Twelf
— a meta-logical framework for deductive systems. In H. Ganzinger,
editor, Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-
Verlag LNAI 1632.

[18] Brigitte Pientka and Frank Pfenning. Termination and reduction
checking in the logical framework. In Carsten Schürmann, editor,
Workshop on Automation of Proofs by Mathematical Induction, Pittsburgh,
Pennsylvania, June 2000.

[19] Ekkehard Rohwedder and Frank Pfenning. Mode and termination
checking for higher-order logic programs. In Hanne Riis Nielson, edi-

LECTURE NOTES OCTOBER 31, 2006

L18.16 Proof Terms

tor, Proceedings of the European Symposium on Programming, pages 296–
310, Linköping, Sweden, April 1996. Springer-Verlag LNCS 1058.

[20] Carsten Schürmann. Automating the Meta Theory of Deductive Systems.
PhD thesis, Department of Computer Science, Carnegie Mellon Uni-
versity, August 2000. Available as Technical Report CMU-CS-00-146.

[21] Carsten Schürmann and Frank Pfenning. A coverage checking al-
gorithm for LF. In D. Basin and B. Wolff, editors, Proceedings of the
16th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2003), pages 120–135, Rome, Italy, September 2003. Springer-
Verlag LNCS 2758.

LECTURE NOTES OCTOBER 31, 2006

15-819K: Logic Programming

Lecture 19

Verifying Progress

Frank Pfenning

November 2, 2006

In this lecture we discuss another logic program analysis, namely verify-
ing the progress property. Progress guarantees that a predicate can never
fail for arbitrary values of its input arguments. Together with termination
this guarantees that a predicate is total in its given input arguments. As
sketched in the previous lecture, this an important piece in the general tech-
nique of verifying properties of logic programs by reasoning about proof
terms.

19.1 The Progress Property

Progress in general just says that during the execution of a program we
have either finished computation with a value, or we can make a further
step. In particular, computation can never “get stuck”. In logic program-
ming this translates to saying the computation can never fail. This requires
an understanding of the intended input and output arguments of a predi-
cate, as well as the domain on which it is to be applied.

Returning to the well-worn example of addition,

plus(z, N,N).
plus(s(M),N, s(P)) ← plus(M,N,P).

the plus predicate is total in the first two arguments, assuming they are nat-
ural numbers. It is not total in the first and third argument, because a query
such as plus(s(z), N, z) will fail. Totality decomposes into two subquestions,
namely progress and termination, since we always assume the program is
well-typed and well-moded. Termination is easy to see here because the

LECTURE NOTES NOVEMBER 2, 2006

L19.2 Verifying Progress

first argument decreases strictly in each recursive call. Progress is also easy
to see because the first argument must be a natural number, and therefore
be either of the form z or s(m) for some m, and the second argument can be
anything because both clause heads have a variable in that position.

Even though the principal application of progress is probably the ver-
ification of proof of metatheorems presented in relational form, progress
can also be used to check that some given predicates are total functions (al-
though ruling out multi-valued functions requires another step). This may
provide the programmer with additional confidence that no cases in the
definition of a logic program were missed.

19.2 The Right Semantic Starting Point

As repeatedly emphasized, finding the right semantic starting point for an
analysis is the key to obtaining a simple, predictable system and the easiest
proof of correctness. For progress, the residuated form of the program is
somewhat difficult to deal with. Consider the simple form of plus(+,+,−)
above (easily seen to satisfy progress) and the residuated form

plus(x1, x2, x3)← (∃N.x1

.
= z ∧ x2

.
= N ∧ x2

.
= N)

∨ (∃M.∃N.∃P. x1

.
= s(M) ∧ x2

.
= N ∧ x3

.
= s(P) ∧ plus(M,N,P))

on which it is more difficult to discern the same property. Moreover, failure
plays no role in the progress property because, in fact, it is never permitted
to occur, so the semantics should not need to carry a failure continuation.

Hence we return to a fairly early semantics, in which the subgoal stack
is explicit, but not the failure continuation. On the other hand, the substi-
tution for the variables is crucial, so we make that explicit. Recall that there
is a fixed program Γ with a set of closed clauses.

τ ` G1 / G2 ∧ S

τ ` G1 ∧G2 / S

τ ` G2 / S

τ ` > / G2 ∧ S τ ` > / >

(∀x. P ′ ← G) ∈ Γ P ′ρ
.
= Pτ | θ τθ, ρθ ` G / S

τ ` P / S

In the last rule, ρ is a substitution renaming x to a new set of logic variables
X, that is, dom(ρ) = x, cod(ρ) ∩ cod(τ) = ∅. We also assume that the
variables x have been renamed so that x ∩ dom(τ) = ∅.

From this semantics it is easily seen that progress is a question regard-
ing atomic goals, because the cases for conjunction and truth always apply.

LECTURE NOTES NOVEMBER 2, 2006

Verifying Progress L19.3

19.3 Input and Output Coverage

Focusing in, we rewrite the rules for predicate calls assuming the predicate
p(t, s) has a mode declaration which divides the arguments into input ar-
guments t, which come first, and output arguments s, which come second.

(∀x. p(t′, s′)← G) ∈ Γ (t′ρ, s′ρ)
.
= (tτ, sτ) | θ τθ, ρθ ` G / S

τ ` p(t, s) / S

We have ensured progress if such a clause and unifier θ always exist.
Breaking it down a bit further, we see we must have

There exists a θ such that (1) t
′ρθ = tτθ, and (2) s

′ρθ = sτθ where
t
′ are the input terms in the clause head, s′ are the output terms in the

clause head, t are the input arguments to the predicate call, and s are
the output arguments in the predicate call.

We refer to part (1) as input coverage and part (2) as output coverage. In
the problem analysis above a single substitution θ is required, but we will
approximate this by two separate checks. In the next two sections we will
describe the analysis for the two parts of coverage checking. We preview
them here briefly.

For input coverage we need to recall the assumption that predicates are
well-moded. This means that the input arguments in the call, tτθ will be
ground. Hence input coverage is satisfied if for any sequence t of ground
terms of the right types, there exists a clause head such that its input argu-
ments t

′ can be instantiated to t.
Output coverage is trickier. The problem is that mode analysis does not

tell us anything about the output argument sτ of the call p(tτ, sτ). What we
know if that if p succeeds with substitution τθ′, then sτθ′ will be ground,
but this does not help. From examples, like plus above, we can observe that
output coverage is satisfied because the output argument of the call (in the
second clause for plus it is P) is a variable, and will remain a variable until
the call is made. This means we have to sharpen mode checking to verify
that some variables remain free, which we tackle below.

19.4 Input Coverage

Given a program Γ and a predicate p : (τ ,σ) → o with input arguments
of type τ . We say that p satisfies input coverage in Γ if for any sequence of
ground terms t : τ there exists a clause ∀x:τ ′. p(t′, s′) ← G and a substitu-
tion θ : (x:τ ′) such that t

′θ = t.

LECTURE NOTES NOVEMBER 2, 2006

L19.4 Verifying Progress

For the description of the algorithm, we will need a slightly more gen-
eral form. We write ∆ ` Γp � t (read: Γp immediately covers t) if there
exists a clause ∀x:τ ′. p(t′, s′) ← G in Γp and a substitution ∆ ` θ : (x : τ

′)
such that t

′θ = t. We write ∆ ` Γp > t (read: Γp covers t) if for every
ground instance tσ with σ : ∆ there exists a clause ∀x:τ ′. p(t′, s) ← G in
Γp and a subsitution ∆ ` θ : (x:τ ′) such that t

′θ = tσ. Clearly, immediate
coverage implies coverage, but not vice versa.

We reconsider the plus predicate, with the first two arguments consid-
ered as inputs.

plus(z, N,N).
plus(s(M),N, s(P)) ← plus(M,N,P).

By the preceding remark, in order to show that input coverage holds, it is
sufficient to show that

x1:nat, x2:nat ` Γplus > (x1, x2).

Clearly, immediate coverage does not hold, because x1 is not an instance of
either z or s(M). On the other hand, x2 is an instance of N .

At this point we need to exploit the assumption x1:nat by applying an
appropriate left rule. This is acceptable because we move from the usual
open world assumption (any predicate and type is inherently open-ended)
to the closed world assumption (all predicates and types are given com-
pletely by their definition). The closed world assumption is necessary be-
cause progress (and coverage) can only be establish with respect to a fixed
set of types and clauses and could immediately be violated by new decla-
rations (e.g., the additional declaration ω : nat causes input coverage for
plus to fail).

To see what the left rules would look like, we can take a short detour
through type predicates. The declarations

z : nat.

s : nat→ nat.

correspond to
nat(z).
nat(s(N))← nat(N).

The iff-completion yields

nat(N) ↔ N
.
= z ∨ ∃N ′.N

.
= s(N ′) ∧ nat(N ′).

LECTURE NOTES NOVEMBER 2, 2006

Verifying Progress L19.5

The left rule for nat(x) (which is not the most general case, but sufficient for
our purposes) for an arbitrary judgment J on the right-hand side can then
be derived as

` J(z/x)

x
.
= z ` J

nat(x′) ` J(s(x′)/x)

x
.
= s(x′) ∧ nat(x′) ` J

∃N ′. x
.
= s(N ′) ∧ nat(N ′) ` J

x
.
= z ∨ ∃N ′. x

.
= s(N ′) ∧ nat(N ′) ` J

nat(x) ` J

or, in summary:
` J(z/x) nat(x′) ` J(s(x′)/x)

nat(x) ` J

Translated back to types:

∆ ` J(z/x) ∆, x′:nat ` J(s(x′)/x)

∆, x:nat ` J

Using this rule, we can now prove our goal:

x2:nat ` Γplus > (z, x2) x′

1
:nat, x2:nat ` Γplus > (s(x′

1
), x2)

x1:nat, x2:nat ` Γplus > (x1, x2)

Both of the premisses now follow by immediate coverage, using the first
clause for the first premiss and the second clause for the second premiss,
using the critical rule

∆ ` Γp � t

∆ ` Γp > t

For immediate coverage, there is but one rule.

(∀x:τ ′. p(t′, s′)← G) ∈ Γp t
′θ = t for ∆ ` θ : (x:τ ′)

∆ ` Γp � t

We do not write out the left rules, but it should be clear how to derive them
from the type declarations, at least for simple types. We call this process
splitting of a variable x:τ .

An interesting aspect of the left rules is that they are asynchronous.
However, always applying them leads to non-termination, so we have to
follow some terminating strategy. This strategy can be summarized infor-
mally as follows, given a goal ∆ ` Γp > t.

LECTURE NOTES NOVEMBER 2, 2006

L19.6 Verifying Progress

1. Check if ∆ ` Γp � t. If so, succeed.

2. If not, pick a variable x:τ in ∆ and apply inversion as sketched above.
This yields a collection of subgoals ∆i ` Γp � ti. Solve each subgoal.

Picking the right variable to split is crucial for termination. Briefly, we pick
a variable x that was involved in a clash f(t′′)

.
= x when attempting imme-

diate coverage, where f(t′′) is a subterm of t
′. Now one of the possibilities

for x will have f as it top-level function symbol, reducing the clash the next
time around. Thus the splitting process is bounded by the total size of the
input terms in Γp. See the reference below for further discussion and proof
of this fact.

19.5 Output Coverage

Output coverage is to ensure that for every goal p(t, s) encountered while
executing a program, the output positions s

′ of the relevant clause head
p(t′, s′) are an instance of s (if t and t

′ unify). The problem is that ordinary
mode checking does not tell us anything about s: we do not know whether
it will be ground or partially ground or consist of all free variables. How-
ever, if we knew that s consisted of pairwise distinct free variables when
the goal p(t, s) arose, then output coverage would be satisfied since the
variables in s cannot occur in a clause head and therefore the unification
process must succeed.

So we can guarantee output coverage with a sharpened mode-checking
process where an output arguments must be distinct free variables when
a predicate is invoked. Moreover, they must become ground by the time
the predicate suceeds. This is actually very easy: just change the abstract
domain of the mode analysis from u > g (unknown and ground) to f > g

(free and ground). If we also have bidirectional arguments in addition to
input and output we three abstract values with f > u > g. The remainder
of the development is just as in a previous lecture (see Exercise 19.1). The
only slightly tricky aspect is that the output arguments must be distinct free
variables, otherwise the individual substitutions may not compose to one
for all output arguments simultaneously.

Returning to our example,

plus(z, N,N).
plus(s(M),N, s(P)) ← plus(M,N,P).

the only output argument is P , which is indeed a free variable when that
subgoal is executed.

LECTURE NOTES NOVEMBER 2, 2006

Verifying Progress L19.7

We show a couple of cases for failure of output coverage, to illustrate
some points. Assume we have already checked progress for plus. The pro-
gram

test← plus(z, z, s(P)).

trivially satisfies input coverage, but yet fails (and hence cannot satisfy
progress). This is because the output argument in the only call is s(P),
which is not a free variable. This will be noted by the sharpened mode
checker.

Similarly, the program

test←

plus(z, s(z), P),
plus(s(z), s(z), P).

trivially satisfies input coverage but it does not pass the sharpened mode
checker because the second occurrence of P will be ground (from the first
call) rather than free when the second subgoal is executed. And, indeed,
plus will fail and hence cannot satisfy progress.

Finally, a the predicate nexttwo(+,−,−)

nexttwo(N, s(N), s(s(N))).

satisfies progress, but

test← nexttwo(s(z), P, P).

does not, because the two occurrences of P would have to be s(s(z)) and
s(s(s(z))) simultaneously.

19.6 Historical Notes

Progress and coverage do not appear to have received much attention in
the logic programming literature, possibly because they requires types to
be interesting, and their main application lies in verifying proofs of meta-
theorems which is a recent development. An algorithm for coverage in the
richer setting with dependent types is given by Schürmann and myself [1],
which also contains some pointers to earlier literature in functional pro-
gramming.

LECTURE NOTES NOVEMBER 2, 2006

L19.8 Verifying Progress

19.7 Exercises

Exercise 19.1 Write out the rules for a sharpened mode checker with only input
and output arguments where output arguments must be distinct free variables
when a predicate is invoked.

19.8 References

[1] Carsten Schürmann and Frank Pfenning. A coverage checking algo-
rithm for LF. In D. Basin and B. Wolff, editors, Proceedings of the 16th In-
ternational Conference on Theorem Proving in Higher Order Logics (TPHOLs
2003), pages 120–135, Rome, Italy, September 2003. Springer-Verlag
LNCS 2758.

LECTURE NOTES NOVEMBER 2, 2006

15-819K: Logic Programming

Lecture 20

Bottom-Up Logic Programming

Frank Pfenning

November 7, 2006

In this lecture we return to the view that a logic program is defined by a
collection of inference rules for atomic propositions. But we now base the
operational semantics on reasoning forward from facts, which are initially
given as rules with no premisses. Every rule application potentially adds
new facts. Whenever no more new facts can be generated we say forward
reasoning saturates and we can answer questions about truth by examining
the saturated database of facts. We illustrate bottom-up logic program-
ming with several programs, including graph reachability, CKY parsing,
and liveness analysis.

20.1 Bottom-Up Inference

We now return the very origins of logic programming as an operational
interpretation of inference rules defining atomic predicates. As a reminder,
consider the definition of even.

even(z)
evz

even(N)

even(s(s(N)))
evss

This works very well on queries such as even(s(s(s(s(z))))) (which succeeds)
and even(s(s(s(z)))) (which fails). In fact, the operational reading of this
program under goal-directed search constitutes a decision procedure for
ground queries even(n).

This specification makes little sense under an alternative interpretation
where we eagerly apply the inference rules in the forward direction, from
the premisses to the conclusion, until no new facts can be deduced. The

LECTURE NOTES NOVEMBER 7, 2006

L20.2 Bottom-Up Logic Programming

problem is that we start with even(z), then obtain even(s(s(z))), and so on,
but we never terminate.

It would be too early to give up on forward reasoning at this point. As
we have seen many times, even in backward reasoning a natural specifica-
tion of a predicate does not necessarily lead to a reasonable implementa-
tion. We can implement a test whether a number is even via reasoning by
contradication. We seed our database with the claim that n is not even and
derive consequences from that assumption. If we derive a contradictory
fact we know thate even(n) must be true. If not (and our rules are com-
plete), then even(n) must be false. We write odd(n) for the proposition that
n is not even. Then we obtain the following specification

odd(s(s(N)))

odd(N)

to be used for forward reasoning. This single rule obviously saturates be-
cause the argument to odd becomes smaller in every rule application.

What is not formally represented in this program is how we initial-
ize our database (we assume odd(n)), and how we interpret the saturated
database (we check if odd(z) was deduced). In a later lecture we will see
that it is possible to combine forward and backward reasoning to makes
those aspects of an algorithm also part of its implementation.

The strategy of this example, proof by contradiction, does not always
work, but there are many cases where it does. One should check if the
predicate is decidable as a first test. We will see further examples later,
specifically the treatment of unification in the next lecture.

20.2 Graph Reachability

Assuming we have a specification of edge(x, y) whenever there is an edge
from node x to node y, we can specify reachability path(x, y) with the rules

edge(X,Y)

path(X,Y)

edge(X,Y) path(Y,Z)

path(X,Z)

During bottom-up inference these rules will saturate when they have con-
structed the transitive closure of the edge relation. During backward rea-
soning these rules may not terminate (if there are cycles), or be very ineffi-
cient (if there are many paths compared to the number of nodes).

In the forward direction the rules will always saturate. We can also give,
just from the rules, a complexity analysis of the saturation algorithm.

LECTURE NOTES NOVEMBER 7, 2006

Bottom-Up Logic Programming L20.3

20.3 Complexity Analysis

McAllester [3] proved a so-called meta-complexity result which allows us
to analyze the structure of a bottom-up logic program and obtain a bound
for its asymptotic complexity. We do not review the result or its proof in full
detail here, but we sketch it so it can be applied to several of the programs
we consider here. Briefly, the result states that the complexity of a bottom-
up logic program is O(|R(D)| + |PR(R(D))|), where R(D) is the saturated
database (writing here D for the initial database) and PR(R(D)) is the set
of prefix firings of rules R in the saturated database.

The number prefix firings for a given rule is computed by analyzing the
premisses of the rule from left to right, counting in how many ways it could
match facts in the saturated database. Matching an earlier premiss will
fix its variables, which restricts the number of possible matches for later
premisses.

For example, in the case of the transitive closure program, assume we
have e edges and n vertices. Then in the completed database there can be
at most n2 facts path(x, y), while there are always exactly e facts edge(x, y).
The first rule

edge(X,Y)

path(X,Y)

can therefore always match in e ways in the completed database. We ana-
lyze the premisses of the second rule

edge(X,Y) path(Y,Z)

path(X,Z)

from left to right. First, edge(X,Y) can match the database in O(e) ways,
as before. This match fixes Y , so there are now O(n) ways that the sec-
ond premiss could match a fact in the saturated database (each vertex is a
candidate for Z). This yields O(e · n) possible prefix firings.

The size of the saturated database is O(e+n2), and the number of prefix
firings of the two rules is O(e + e · n). Therefore the overall complexity is
O(e · n + n2). Since there are up to n2 edges in the graph, we get a less
informative bound of O(n3) expressed entirely in the number of vertices n.

20.4 CKY Parsing

Another excellent example for bottom-up logic programming and com-
plexity analysis is a CKY parsing algorithm. This algorithm assumes that

LECTURE NOTES NOVEMBER 7, 2006

L20.4 Bottom-Up Logic Programming

the grammar is in Chomsky-normal form, where productions all have the
form

x ⇒ y z

x ⇒ a

where x, y, and z stand for non-terminals and a for terminal symbols. The
idea of the algorithm is to use the grammar production rules from right to
left to compute which sections of the input string can be parsed as which
non-terminals.

We initialize the database with facts rule(x, char(a)) for every grammar
production x ⇒ a and rule(x, jux(y, z)) for every production x ⇒ y z. We
further represent the input string a1 . . . an by assumptions string(i, ai). For
simplicity, we represent numbers in unary form.

Our rules will infer propositions parse(x, i, j) which we will deduce if
the substring ai . . . aj can be parsed as an x. Then the program is repre-
sented by the following two rules, to be read in the forward direction:

rule(X, char(A))
string(I,A)

parse(X, I, I)

rule(X, jux(Y,Z))
parse(Y, I, J)
parse(Z, s(J),K)

parse(X, I,K)

After saturating the database with these rules we can see if the whole string
is in the language generated by the start symbol s by checking if the fact
parse(s, s(z), n) is in the database.

Let g be the number of grammar productions and n the length of the
input string. In the completed database we have g grammar rules, n facts
string(i, a), and at most O(g · n2) facts parse(x, i, j).

Moving on to the rules, in the first rule there are O(g) ways to match
the grammar rule (which fixes A) and then n ways to match string(I,A),
so we have O(g · n). The second rule, again we have O(g) ways to match
the grammar rule (which fixes X, Y , and Z) and then O(n2) ways to match
parse(Y, I, J). In the third premiss now only K is unknown, giving us O(n)
way to match it, which means O(g · n3) prefix firings for the second rule.

These considerations give us an overall complexity of O(g · n3), which
is also the traditional complexity bound for CKY parsing.

20.5 Liveness Analysis

We consider an application of bottom-up logic programming in program
analysis. In this example we analyze code in a compiler’s intermediate

LECTURE NOTES NOVEMBER 7, 2006

Bottom-Up Logic Programming L20.5

language to find out which variables are live or dead at various points in
the program. We say a variable is live at a given program point l if its
value will be read before it is written when computation reaches l. This
information can be used for optimization and register allocation.

Every command in the language is labeled by an address, which we
assume to be a natural number. We use l and k for labels and w, x, y,
and z for variables, and op for binary operators. In this stripped-down
language we have the following kind of instructions. A representation of
the instruction as a logical term is given on the right, although we will
continue to use the concrete syntax to make the rules easier to read.

l : x = op(y, z) inst(l, assign(x, op, y, z))
l : if x goto k inst(l, if(x, k))
l : goto k inst(l, goto(k))
l : halt inst(l, halt)

We use the proposition x 6= y to check if two variables are distinct and write
s(l) for the successor location to l which contains the next instruction to be
executed unless the usual control flow is interrupted.

We write live(w, l) if we have inferred that variable w is live at l. This is
an over-approximation in the sense that live(w, l) indicates that the variable
may be live at l, although it is not guaranteed to be read before it is written.
This means that any variable that is not live at a given program point is def-
initely dead, which is the information we want to exploit for optimization
and register allocation.

We begin with the rules for assignment x = op(y, z). The first two rules
just note the use of variables as arguments to an operator. The third one
propagates liveness information backwards through the assignment oper-
ator. This is sound for any variable, but we would like to achieve that x

is not seen as live before the instruction x = op(y, z), so we verify that
W 6= X.

L : X = Op(Y,Z)

live(Y,L)

L : X = Op(Y,Z)

live(Z,L)

L : X = Op(Y,Z)
live(W, s(L))
W 6= X

live(W,L)

The rules for jumps propagate liveness information backwards. For uncon-
ditional jumps we look at the target; for conditional jumps we look both
at the target and the next statement, since we don’t analyze whether the

LECTURE NOTES NOVEMBER 7, 2006

L20.6 Bottom-Up Logic Programming

condition may be true or false.

L : goto K

live(W,K)

live(W,L)

L : if X goto K

live(W,K)

live(W,L)

L : if X goto K

live(W, s(L))

live(W,L)

Finally, the variable tested in a conditional is live.

L : if X goto K

live(X,L)

For the complexity analysis, let n be the number of instructions in the
program and v be the number of variables. The size of the saturated data-
base is O(v · n), since all derived facts have the form live(X,L) where X

is a variable and L is the label of an instruction. The prefix firings of all 7
rules are similarly bounded by O(v · n): there are n ways to match the first
instruction and then at most v ways to match the second premiss (if any).
Hence the overall complexity is bounded by O(v · n).

20.6 Functional Evaluation

As a last example in this lecture we present an algorithm for functional
call-by-value evaluation. Our language is defined by

e ::= x | λx. e | e1 e2

We assume that substitution on terms is a primitive so we can avoid im-
plementing it explicitly (see Exercise 20.4). Such an assumption is not un-
reasonable. For example, in the LolliMon language which provides both
top-down and bottom-up logic programming, substitution is indeed built-
in. Since we are only interested in evaluating closed terms, all values here
have the form λx. e.

We use three predicates:

eval(e) evaluate e

e →∗ e′ e reduces to e′

e ↪→ v e evaluates to v.

We seed the database with eval(e), saturate it, and then read off the value
as e ↪→ v. Of course, since this is the untyped λ-calculus, saturation is not
guaranteed.

LECTURE NOTES NOVEMBER 7, 2006

Bottom-Up Logic Programming L20.7

The first rules propagate the information about which terms are to be
evaluated.

eval(λx. e)

λx. e ↪→ λx. e

eval(e1 e2)

eval(e1)

eval(e1 e2)

eval(e2)

In case we had an application we have to gather the results, substitute the
argument into the body of the function, and recursively evaluate the re-
sult. This generates a reduction from which we need to initiate evaluation.
Finally, we need to compose reductions to obtain the final value.

eval(e1 e2)
e1 ↪→ λx. e′

1

e2 ↪→ v2

e1 e2 →∗ e′
1
(v2/x)

e →∗ e′

eval(e′)
e →∗ e′ e′ ↪→ v

e ↪→ v

As an example, consider the following database saturation process.

eval((λx. x) (λy. y))

eval(λx. x)
eval(λy. y)

λx. x ↪→ λx. x

λy. y ↪→ λy. y

(λx. x) (λy. y) →∗ λy. y

(λx. x) (λy. y) ↪→ λy. y

This form of evaluation may seem a bit odd, compared to the usual
top-down formulation (again, assuming substitution as a primitive)

λx. e ↪→ λx. e

e1 ↪→ λx. e′
1

e2 ↪→ v2 e′
1
(v2/x) ↪→ v

e1 e2 ↪→ v

However, it does have some advantages. If we proved its completeness
(see Exercise 20.5), we would get some theorems for free. For example, it is
easy to see that eval((λx. x x) (λx. x x)) saturates without producing a value
for the application:

eval((λx. x x) (λx. x x))

eval(λx. x x)

(λx. x x) ↪→ (λx. x x)

(λx. x x) (λx. x x) →∗ (λx. x x) (λx. x x)

LECTURE NOTES NOVEMBER 7, 2006

L20.8 Bottom-Up Logic Programming

At this point the database is saturated. This proves that the evaluation of
(λx. x x) (λx. x x) fails. In the top-down semantics (that is, with backward
chaining as in Prolog), such a query would fail to terminate instead unless
we added some kind of loop detection.

Note that the bottom-up program for evaluation, which consists of six
rules, cannot be analyzed with McAllester’s technique, because in the con-
clusion of the rule for reduction a new term e′

1
(v2/x) is created. We can

therefore not bound the size of the completed database. And, in fact, the
saturation may fail to terminate (see Exercise 20.7).

20.7 Variable Restrictions

Bottom-up logic programming, as considered by McAllester, requires that
every variable in the conclusion of a rule also appears in a premiss. This
means that every generated fact will be ground. This is important for sat-
uration and complexity analysis because a fact with a free variable could
stand for infinitely many instances.

Nonetheless, bottom-up logic programming can be generalized in the
presence of free variables and we will do this in a later lecture.

20.8 Historical Notes

The bottom-up interpretation of logic programs goes back to the early days
of logic programming. See, for example, the paper by Naughton and Ra-
makrishnan [4].

There are at least three areas were logic programming specification with
a bottom-up semantics has found significant applications: deductive data-
bases, decision procedures, and program analysis. Unification, as present
in the next lecture, is an example of a decision procedure for unifiability.
Liveness analysis is an example of program analysis due to McAllester [3],
who was particularly interested in describing program analysis algorithms
at a high level of abstraction so their complexity would be self-evident. This
was later refined by Ganzinger and McAllester [1, 2] by allowing deletions
in the database. We treat this in a later lecture where we generalize bottom-
up inference to linear logic.

20.9 Exercises

Exercise 20.1 Write a bottom-up logic program for addition (plus/3) on num-
bers in unary form and then extend it to multiplication (times/3).

LECTURE NOTES NOVEMBER 7, 2006

Bottom-Up Logic Programming L20.9

Exercise 20.2 Consider the following variant of graph reachability.

edge(X,Y)

path(X,Y)

path(X,Y) path(Y,Z)

path(X,Z)

Perform a McAllester-style complexity analysis and compare the infered complex-
ity with the one given in lecture.

Exercise 20.3 The set of prefix firings depends on the order of the premisses. Give
an example to demonstrate this.

Exercise 20.4 Extend the bottom-up evaluation semantics for λ-terms by adding
rules to compute the substitutions e(v/x). You may assume that v is closed, and
that the necessary tests on variable names can be performed.

Exercise 20.5 Relate the bottom-up and top-down version of evaluation of λ-
terms to each other by an appropriate pair of theorems.

Exercise 20.6 Add pairs to the evaluation semantics, together with first and sec-
ond projections. A pair should only be a value if both components are values, that
is, pairs are eagerly evaluated.

Exercise 20.7 Give an example which shows that saturation of evaluation for λ-
terms may fail to terminate.

20.10 References

[1] Harald Ganzinger and David A. McAllester. A new meta-complexity
theorem for bottom-up logic programs. In T.Nipkow R.Goré, A.Leitsch,
editor, Proceedings of the First International Joint Conference on ArAuto-
mated Reasoning (IJCAR’01), pages 514–528, Siena, Italy, June 2001.
Springer-Verlag LNCS 2083.

[2] Harald Ganzinger and David A. McAllester. Logical algorithms. In
P. Stuckey, editor, Proceedings of the 18th International Conference on
Logic Programming, pages 209–223, Copenhagen, Denmark, July 2002.
Springer-Verlag LNCS 2401.

[3] Dave McAllester. On the complexity analysis of static analyses. Journal
of the ACM, 49(4):512–537, 2002.

[4] Jeff Naughton and Raghu Ramakrishnan. Bottom-up evaluation of
logic programs. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic. Essays in Honor of Alan Robinson, pages 640–700. MIT Press, Cam-
bridge, Massachusetts, 1991.

LECTURE NOTES NOVEMBER 7, 2006

L20.10 Bottom-Up Logic Programming

LECTURE NOTES NOVEMBER 7, 2006

15-819K: Logic Programming

Lecture 21

Forward Chaining

Frank Pfenning

November 9, 2006

In this lecture we go from the view of logic programming as derived from
inference rules for atomic propositions to one with explicit logical connec-
tives. We have made this step before in order to describe the backward-
chaining semantics of top-down logic programming as in Prolog. Here we
instead describe the forward-chaining semantics of bottom-up logic pro-
gramming. We use this to prove the correctness of an earlier example, and
introduce an algorithm for unification as another example.

21.1 The Database as Context

When we try to formalize the semantics of bottom-up logic programming
and saturation, one of the first questions to answer is how to represent the
database from a logical point of view. Perhaps surprisingly at first, it ends
up as a context of assumptions. We interpret a rule

P1 true . . . Pn true

P true

as license to add the assumption P true if we already have assumption
P1 true through Pn true . This means we actually have to turn the rule
upside down to obtain the left rule

Γ, P1 true, . . . , Pn true, P true ` C true

Γ, P1 true, . . . , Pn true ` C true

Since in the case of (non-linear) intuitionistic logic, the context permits
weakening and contraction, this step only represents progress if P is not

LECTURE NOTES NOVEMBER 9, 2006

L21.2 Forward Chaining

already in Γ or among the Pi. We therefore stop forward chaining if none
of the inferences would make progress and say the database, represented
as the context of assumptions, is saturated.

For now we will view logical deduction as ground deduction and return
to the treatment of free variables in the next lecture. However, the inference
rules to infer ground facts may still contain free variables. If we reify infer-
ence rules as logical implications and collect them in a fixed context Γ0 we
obtain the next version of the above rule (omitting ‘true’):

(∀x. P ′

1
∧ . . . ∧ P ′

n
⊃ P ′) ∈ Γ0

P ′

i
θ = Pi for all 1 ≤ i ≤ n

dom(θ) = x

cod(θ) = ∅ Γ, P1, . . . , Pn, P ′θ ` C

Γ, P1, . . . , Pn ` C

To model saturation, we would restrict the rule to the case where P ′θ /∈

Γ, P1, . . . , Pn. Moreover, the set of free variables in P ′ should be a subset of
the variables in P1, . . . , Pn so that P ′θ is ground without having to guess a
substitution term.

Note that the right-hand side C remains unchanged and unreferenced
in the process of forward chaining. Later, when we are interested in com-
bining forward and backward chaining we will have to pay some attention
to the right-hand side. For now we leave the processes of creating the initial
database and reading off an answer from the saturated database informal
and concentrate on the forward chaining itself.

21.2 Even and Odd, Revisited

We revisit the two programs for checking if an given number is even in
order to see how we can reason about the correctness of forward chaining
programs. Recall first the definition of even, which has a natural backward
chaining interpretation.

even(z)
evz

even(N)

even(s(s(N)))
evss

Next, the rule for odd, which is our notation of the property of not being
even.

odd(s(s(N)))

odd(N)

To see if even(n) we seed the database with odd(n), forward chain to satu-
ration and then check if we have derived a contradiction, namely odd(z).

The correctness of the forward chaining program can be formulated as:

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.3

even(n) true iff odd(n) true ` odd(z) true

The intent is that we only use forward chaining rules for the second judg-
ment, that is, we work entirely on the left except for an initial sequent to
close off the derivation.

Theorem 21.1 If even(n) true then odd(n) true ` odd(z) true .

Proof: By induction on the deduction D of even(n) true

Case: D =
even(z)

where n = z.

odd(z) ` odd(z) By hypothesis rule

Case: D =

D′

even(n′)

even(s(s(n′)))
where n = s(s(n′)).

odd(n′) ` odd(z) By ind. hyp. on D′

odd(s(s(n′))), odd(n′) ` odd(z) By weakening
odd(s(s(n′))) ` odd(z) By forward chaining

2

The last step in the second case of this proof is critical. We are trying
to show that odd(s(s(n′))) ` odd(z). Applying the forward chaining rule
reduces this to showing odd(s(s(n′))), odd(n′) ` odd(z). But this follows by
induction hypothesis plus weakening.

This establishes a weak form of completeness of the forward chaining
program in the sense that if it saturates, then odd(z) must be present in
the saturated database. A second argument shows that the database must
always saturate (see Exercise 21.1), and therefore the forward chaining im-
plementation is complete in the stronger sense of terminating and yielding
a contradiction whenever n is even.

For the soundness direction we need to generalize the induction hy-
pothesis, because odd(n) true ` odd(z) true will not match the situation
even after a single step on the left. The problem is that a database such as
odd(n), odd(s(n)) will saturate and derive odd(z), but only one of the two
numbers is even. Fortunately, it is sufficient to know that there exists some
even number in the context, because we seed it with a singleton.1

1I am grateful to Deepak Garg for making this observation during lecture.

LECTURE NOTES NOVEMBER 9, 2006

L21.4 Forward Chaining

Lemma 21.2 If Γ ` odd(z) where Γ consists of assumptions of the form odd(),
then there exists an odd(m) ∈ Γ such that even(m).

Proof: By induction on the structure of the given derivation E .

Case: E =
Γ′, odd(z) ` odd(z)

where Γ = (Γ′, odd(z)).

even(z) By rule
Choose m = z odd(z) ∈ Γ

Case: E =

E ′

Γ′, odd(s(s(n))), odd(n) ` odd(z)

Γ′, odd(s(s(n))) ` odd(z)
where Γ = (Γ′, odd(s(s(n)))).

even(m′) for some odd(m′) ∈ (Γ′, odd(s(s(n))), odd(n))
By ind. hyp. on E ′

odd(m′) ∈ (Γ′, odd(s(s(n)))) Subcase
Choose m = m′ Since odd(m′) ∈ Γ

odd(m′) = odd(n) Subcase
even(n) By equality reasoning
even(s(s(n))) By rule
Choose m = s(s(n)) Since odd(s(s(n))) ∈ Γ

2

21.3 Synchronous Atoms

When studying goal-directed search as the foundation of logic program-
ming, we found that the notion of focusing gave us the right model for the
search behavior of the connectives. Search is goal-directed if all the con-
nectives are asynchronous so they can be decomposed eagerly as goals until
an atomic goal is reached. Then we focus on one assumption and break
this down until it matches the conclusion. The asynchronous fragment of
intuitionistic logic is defined as follows.

A ::= P | A1 ∧ A2 | > | A2 ⊃ A1 | ∀x.A

We summarize the rules of the focusing system in Figure 1. So far, has been
the basis of backward chaining.

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.5

A ∈ Γ Γ;A � P

Γ ` P
focusL

Γ;P � P
idR

no rule for P ′ 6= P

Γ;P ′ � P

Γ, A ` B

Γ ` A ⊃ B
⊃R

Γ;B � P Γ ` A

Γ;A ⊃ B � P
⊃L

Γ ` A Γ ` B

Γ ` A ∧ B
∧R

Γ;A � P

Γ;A ∧ B � P
∧L1

∆;B � P

Γ;A ∧ B � P
∧L2

Γ ` >
>R

no >L rule

Γ ` A x /∈ FV(Γ)

Γ ` ∀x.A
∀R

∆;A(t/x) � P

Γ;∀x.A � P
∀L

Figure 1: Focused Intuitionistic Logic; Asynchronous Fragment

Forward chaining violates the goal-directed nature of search, so we
need to depart from the purely asynchronous fragment. Our change is min-
imalistic: we introduce only synchronous atomic propositions Q. For the sake
of economy we also interpret inference rules

C1 true . . . Cn true

Q true

without conjunction, writing them with iterated implication

∀x. C1 ⊃ (C2 ⊃ . . . (Cn ⊃ Q))

instead. Here, Ci are all atoms, be they asynchronous (P) or synchronous
(Q).

Since a goal can now be synchronous, we have the opportunity to focus
on the right, if the right-hand side is a synchronous proposition (so far only
Q). When a synchronous atomic proposition is in right focus, we succeed
if the same proposition is in Γ; otherwise we fail.

Γ � Q

Γ ` Q
focusR

Q ∈ Γ

Γ � Q
idL

no rule for Q /∈ Γ
Γ � Q

LECTURE NOTES NOVEMBER 9, 2006

L21.6 Forward Chaining

We also have to re-evaluate the left rule for implication.

Γ;B � P Γ ` A

Γ;A ⊃ B � P
⊃L

Strictly speaking, the focus should continue on both subformulas. How-
ever, when all propositions are asynchronous, we immediately lose right
focus, so we short-circuited the step from Γ � A to Γ ` A. Now that we
have synchronous proposition, the rule needs to change to

Γ;B � P Γ � A

Γ;A ⊃ B � P
⊃L

and we add a rule
Γ ` A A 6= Q

Γ � A
blurR

A similar phenomenon arises on the left: when focused on a proposition
that is asynchronous on the right (and not asynchronous on the left), we
lose focus but we cannot fail as in the case of P .

Γ, Q ` P

Γ;Q � A
blurL

Furthermore, all rules need to be generalized to allow either synchronous
or asynchronous atoms on the right, which we write as C .

These considerations lead to the following rules, where have omitted
the rules for conjunction, truth, and universal quantification. They are only
changed in that the conclusion in the left rules can now be an arbitrary C ,
that is, a P or Q.

A ∈ Γ, A 6= Q Γ;A � C

Γ ` C
focusL

Γ;P � P
idR

no rule for P 6= C

Γ;P � C

Γ, A1 ` A2

Γ ` A1 ⊃ A2

⊃R
Γ;A1 � C Γ � A2

Γ;A2 ⊃ A1 � C
⊃L

Γ � Q

Γ ` Q
focusR

Q ∈ Γ

Γ � Q
idL

no rule for Q /∈ Γ
Γ � Q

Γ ` A A 6= Q

Γ � A
blurR

Γ, Q ` C

Γ;Q � C
blurL

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.7

This system is sound and complete with respect to ordinary intuition-
istic logic, no matter which predicates are designated as synchronous and
asynchronous. As before, this can be proved via a theorem showing the
admissibility of various forms of cut for focused derivations. However, it
is important that all occurrences of a predicate have the same status, other-
wise the system may become incomplete.

21.4 Pure Forward Chaining

In pure forward chaining all atomic predicates are considered synchronous.
What kind of operational semantics can we assign to this system? In a
situation Γ ` A we first break down A (which, after all, is asynchronous)
until we arrive at Q. At this point we have to prove Γ ` Q. There are
two potentially applicable rules, focusR and focusL. Let us consider these
possibilities.

The focusR rule will always be immediately preceded by idL, which
would complete the derivation. So it comes down to a check if Q is in Γ.

The focusL rule focuses on a program clause or fact in Γ. Consider the
case of a propositional Horn clause Q1 ⊃ . . . ⊃ Qn ⊃ Q′. We apply ⊃L

rule, with premisses Γ;Q2 ⊃ . . . ⊃ Qn ⊃ Q′ � C and Γ � Q1. The only
rule applicable to the second premiss is idL, so Q1 must be in the database
Γ. We continue this process and note that Q2, . . . , Qn must all be in the
database Γ already. In the last step the first premiss is Γ;Q′ � Q which
transitions to Γ, Q′ ` Q.

In summary, applying a left focus rule to a clause Q1 ⊃ . . . ⊃ Qn ⊃ Q′

reduces the sequent Γ ` Q to Γ, Q′ ` Q if Qi ∈ Γ for 1 ≤ i ≤ n. This is
exactly the forward chaining step from before.

Overall, we can either right focus to see if the goal Q has already been
proved, or apply a forward chaining step. A reasonable strategy is to sat-
urate (repeated applying left focus until we make no more progress) and
then apply right focus to see if Q has been deduced. The failure of left
focus can be enforced by replacing the blurL rule by

Γ, Q ` C Q /∈ Γ

Γ;Q � C
blurL′.

This remains complete due to the admissibility of contraction, that is, if
Γ, A,A ` C then Γ, A ` C . This analysis also suggests that the left rule for
implication is more perspicuous if written with the premisses reversed in

LECTURE NOTES NOVEMBER 9, 2006

L21.8 Forward Chaining

case the goal on the right-hand side is synchronous.

Γ � A1 Γ;A2 � Q

Γ;A1 ⊃ A2 � Q
⊃L

In the case of a Horn clause this means we first check if A1 = Q1 is in Γ and
then proceed to analyze the rest of the clause.

21.5 Matching and Ground Bottom-Up Logic Programming

The analysis of forward chaining becomes only slightly more complicated
if we allow the Horn clauses ∀x. Q1 ⊃ . . . ⊃ Qn ⊃ Q′ to be quantified as
long as we restrict the variables in the head Q′ of the clause to be a subset of
the variables in Q1, . . . , Qn. Then right focusing must return a substitution
θ and we have the following rules, specialized to the Horn fragment with
only synchronous atoms.

A ∈ Γ, A 6= Q′ Γ;A � Q

Γ ` Q
focusL

Γ � Q1 | θ Γ;A2θ � Q

Γ;Q1 ⊃ A2 � Q
⊃L

Γ;A(X/x) � Q X /∈ FV(Γ, A,Q)

Γ;∀x.A � Q
∀L

Γ � Q | (·)

Γ ` Q
focusR

Q′ ∈ Γ Q′ = Qθ

Γ � Q | θ
idL

no rule if no such Q′, θ

Γ � Q | θ

Γ, Q′ ` Q Q′ /∈ Γ

Γ;Q′ � Q
blurL′

By the restriction on free variables, the Q′ in the blurL cannot contain any
free variables. The blurR rule cannot apply in the Horn fragment. We also
assumed for simplicity that the overall goal Q in Γ ` Q is closed.

So on the Horn fragment under the common restriction that all vari-
ables in the head of a clause must appear in its body, bottom-up logic pro-
gramming corresponds exactly to treating all atomic propositions as syn-
chronous. The operational semantics requires matching, instead of full uni-
fication, because the database Γ consists only of ground facts.

21.6 Combining Forward and Backward Chaining

The focusing rules for the language given ealier (that is, all asynchronous
connectives plus synchronous atoms) are sound and complete with respect

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.9

to the truth judgment and therefore a potential basis for combining for-
ward and backward chaining. Backward chaining applies to asynchronous
atoms and forward chaining to synchronous atoms. For the propositional
case this is straightforward, but in the case of quantifiers it becomes diffi-
cult. We consider quantifiers in the next lecture and the propositional case
briefly here, by example.

We look at the behavior of

C1, C1 ⊃ C2, C2 ⊃ C3 ` C3

for various assignment of C1, C2, and C3 as synchronous or asynchronous.
Interestingly, no matter what we do, in the focusing system there is exactly
one proof of this sequent.

If all predicates are asynchronous,

P1, P1 ⊃ P2, P2 ⊃ P3 ` P3,

we must focus on P2 ⊃ P3. One step of backward chaining generates the
subgoal

P1, P1 ⊃ P2, P2 ⊃ P3 ` P2.

Now we must focus on P1 ⊃ P2 and obtain the subgoal

P1, P1 ⊃ P2, P2 ⊃ P3 ` P1

which succeeds by focusing on P1 on the left. No other proof paths are
possible.

If all predicates are synchronous,

Q1, Q1 ⊃ Q2, Q2 ⊃ Q3 ` Q3,

we must focus on Q1 ⊃ Q2 because only Q1 is directly available in the
context. Focusing on Q1 is prohibited because it is synchronous on the
right, and therefore asynchronous on the left. We obtain the subgoal

Q1, Q2, Q1 ⊃ Q2, Q2 ⊃ Q3 ` Q3.

Now we must focus on Q2 ⊃ Q3. Focusing on Q1 ⊃ Q2 would fail since
Q2 is already in the context, and focusing on Q3 on the right would fail
since Q3 is not yet in the context. This second forward chaining step now
generates

Q1, Q2, Q3, Q1 ⊃ Q2, Q2 ⊃ Q3 ` Q3.

LECTURE NOTES NOVEMBER 9, 2006

L21.10 Forward Chaining

At this point we can only focus on the right, which completes the proof.

Now consider a mixed situation

Q1, Q1 ⊃ P2, P2 ⊃ Q3 ` Q3.

Focusing on Q1 ⊃ P2 will fail, because the right-hand side does not match
P2. The only successful option is to focus on P2 ⊃ Q3 which generates two
subgoals

Q1, Q1 ⊃ P2, P2 ⊃ Q3 ` P2

and

Q1, Q3, Q1 ⊃ P2, P2 ⊃ Q3 ` Q3.

For the first we focus on Q1 ⊃ P2 and finish, for the second we focus on the
right and complete the proof.

You are asked to consider other mixed situations in Exercise 21.2.

21.7 Beyond the Horn Fragment

The focusing rules are more general than the Horn fragment, but there is
no particular difficulty in adopting the operational semantics as presented
here, as long as we exclude the difficulties that arise due to quantification.
In a later lecture we will consider adding other synchronous connectives
(falsehood, disjunction, and existential quantification).

Here, we make only one remark about conjunction and truth. In case
of intuitionistic logic they can safely be considered to be synchronous and
asynchronous. This means we can add the rules

Γ � A1 Γ � A2

Γ � A1 ∧ A2 Γ � >

This allows us to write Horn clauses as ∀x. Q1 ∧ . . . ∧Qn ⊃ Q′ without any
change in the operational behavior compared with ∀x. Q1 ⊃ . . . ⊃ Qn ⊃ Q′.

We could similarly add some left rules, but this would require an addi-
tional judgment form to break down connectives that are asynchronous on
the left, which we postpone to a later lecture.

21.8 Unification via Bottom-Up Logic Programming

We close this lecture with another example of bottom-up logic program-
ming, namely and implementation of unification.

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.11

The implementation of unification by bottom-up logic programming il-
lustrates a common type of program where saturation can be employed
to great advantage. This is similar to the even example where we reason
by contradication for a decidable predicate. Here, the predicate is non-
unifiability of two terms s and t, as well as non-unifiability of sequences
of terms s and t as an auxiliary predicate. In order to show that two terms
are non-unifiable we assume they are unifiable, saturate, and then test the
resulting saturated database for inconsistent information. We write s

.
= t

and s
.
= t for the two equality relations.

Since there are a number of ways a contradiction can arise, we also in-
troduce an explicit proposition contra to indicate a contradiction. In a later
lecture we will see that we can in fact use ⊥ with a sound logical interpre-
tation, but that would requires us to go beyond the current setting.

The way to think about the rules is via the laws governing equality. We
start with symmetry, transitivity, and reflexivity. Reflexivity actually gives
us no new information (we already know the two terms are equal), so there
is no forward rule for it.

s
.
= t

t
.
= s

s
.
= t t

.
= r

s
.
= r

Not all instances of transitivity are actually required (see Exercise 21.3); re-
stricting it can lead to an improvement in the running time of the algorithm.
Next, the congruence rules for constructors and sequences.

f(s)
.
= f(t)

s
.
= t

(s, s)
.
= (t, t)

s
.
= t

(s, s)
.
= (t, t)

s
.
= t

(·)
.
= (·)

no rule

There is no rule for (·)
.
= (·) since this fact does not yield any new infor-

mation. However, we have rules that note contradictory information by
concluding contra.

f(s)
.
= g(t) f 6= g

contra

(·)
.
= (t, t)

contra

(s, s)
.
= (·)

contra

Even in the presence of variables, the rules so far will saturate, closing a
given equality under its consequences. We consider f(x, g(b))

.
= f(a, g(x))

as an example and show the generated consequences, omitting any identi-

LECTURE NOTES NOVEMBER 9, 2006

L21.12 Forward Chaining

ties t
.
= t and intermediate steps relating a sequences to their elements.

f(x, g(b))
.
= f(a, g(x)) Assumption

f(a, g(x))
.
= f(x, g(b)) Symmetry

x
.
= a Congruence

g(b)
.
= g(x) Congruence

a
.
= x Symmetry

g(x)
.
= g(b) Symmetry

b
.
= x Congruence

x
.
= b Symmetry

b
.
= a Transitivity

a
.
= b Symmetry

contra Clash b 6= a

The only point missing from the overall strategy to is to generate a con-
tradiction due to a failure of the occurs-check. For this we have two new
forms of propositions, x /∈ t and x /∈ t which we use to propagate occur-
rence information.

x
.
= f(t)

x /∈ t

x /∈ (t, t)

x /∈ t

x /∈ (t, t)

x /∈ t

x /∈ (·)

no rule

x /∈ f(t)

x /∈ t

x /∈ x

contra

x /∈ y, x 6= y

no rule

x /∈ t t
.
= s

x /∈ s

The last rule is necessary so that, for example, the set x
.
= f(y), y

.
= f(x)

can be recognized as contradictory.

Let us apply the McAllester meta-complexity result. In the completed
database, any two subterms of the original unification problem may be set
equal, so we have O(n2) possibilities. Transitivity has O(n3) prefix firings,
so a cursory analysis yields O(n3) complexity. This is better than the ex-
ponential complexity of Robinson’s algorithm, but still far worse then the

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.13

linear time lower bound. Both the algorithm and the analysis can be re-
fined in a number of ways. For example, we can restrict the uses of sym-
metry and transitivity to obtain better bounds, and we can postpone the
use of non-occurrence to a second pass over a database saturated by the
other rules.

This form of presentation of unification has become standard practice.
It does not explicitly compute a unifier, but for unifiable terms it computes
a kind of graph where the nodes in the original term (when viewed as a
dag) are the nodes, and nodes are related by explicit equalities. From this a
unifier can be read off by looking up the equivalence classes of the variables
in the original unification problem.

Another nice property of unification, shared by many other saturation-
based algorithms, is that it is incremental. This means that equations can
be added one by one, and the database saturated every time, starting from
the previously saturated one. If the equations ever become contradictory,
contra is derived.

Here is a sketch how this might be used in the implementation of a logic
programming engine. We have a constraint store, initially empty. When-
ever logic programming search would call unification to obtain a unifier,
we instead assume the equation into the database and saturate it. If we
obtain a contradiction, unification fails and we have to backtrack. If not,
we continue with the resulting constraint store. A neat thing about this im-
plementation is that we never explicitly need to compute and apply a most
general unifier: any goal we consider is always with respect to a saturated
(and therefore consistent) set of equations.

21.9 Historical Notes

Although the notion that atoms may be synchronous or asynchronous, at
the programmer’s discretion, is relatively old [1], I believe that the obser-
vation connecting forward chaining to synchronous atoms is relatively re-
cent [2], and was made in the setting of general theorem proving. An al-
ternative approach to combining forward and backward chaining in logic
programming using a monad [5] will be the subject of a later lecture.

The view of unification as a forward reasoning process similar to the
one described here is due to Huet [3], although he maintained equivalence
classes of terms much more efficiently than our naive specification, using
the well-known union-find algorithm to arrive at an almost linear algo-
rithm. Huet’s basic idea was later refined by Martelli and Montanari [6]
and in a different way by Paterson and Wegman [7] to obtain linear time

LECTURE NOTES NOVEMBER 9, 2006

L21.14 Forward Chaining

algorithms for unification.
The idea to handle unification problems via a store of constraints, to

be updated and queried during computation, goes back to constraint logic
programming [4]. It was elevated to logical status by Saraswat [8], although
the connection to focusing, forward and backward chaining was not recog-
nized at the time.

21.10 Exercises

Exercise 21.1 Prove that the database initialized with odd(n) for some n and
closed under forward application of the rule

odd(s(s(N)))

odd(N)

will always saturate in a finite number of steps.

Exercise 21.2 Consider two other ways to assign atoms to be synchronous or
asynchronous for the sequent

C1, C1 ⊃ C2, C2 ⊃ C3 ` C3

from Section 21.6 and show that there exists a unique proof in each case.

Exercise 21.3 Improve the bottom-up unification algorithm by analyzing more
carefully which instances of symmetry and transitivity are really needed. You may
ignore the occurs-check, which we assume could be done in a second pass after the
other rules saturate. What kind of McAllester complexity does your analysis yield?

21.11 References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[2] Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical charac-
terization of forward and backward chaining in the inverse method. In
U. Furbach and N. Shankar, editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning (IJCAR’06), pages 97–111, Seat-
tle, Washington, August 2006. Springer LNCS 4130.

[3] Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . . , ω.
PhD thesis, Université Paris VII, September 1976.

LECTURE NOTES NOVEMBER 9, 2006

Forward Chaining L21.15

[4] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the 14th Annual Symposium on Principles of Programming
Languages, pages 111–119, Munich, Germany, January 1987. ACM Press.

[5] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Mon-
adic concurrent linear logic programming. In A.Felty, editor, Proceed-
ings of the 7th International Symposium on Principles and Practice of Declar-
ative Programming (PPDP’05), pages 35–46, Lisbon, Portugal, July 2005.
ACM Press.

[6] Alberto Martelli and Ugo Montanari. An efficient unification al-
gorithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[7] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Com-
puter and System Sciences, 16(2):158–167, April 1978.

[8] Vijay Saraswat. Concurrent Constraint Programming. MIT Press, 1991.
ACM Doctoral Dissertation Award Series.

LECTURE NOTES NOVEMBER 9, 2006

L21.16 Forward Chaining

LECTURE NOTES NOVEMBER 9, 2006

15-819K: Logic Programming

Lecture 22

Hyperresolution

Frank Pfenning

November 14, 2006

In this lecture we lift the forward chaining calculus from the ground to
the free variable case. The form of lifting required is quite different from
the backward chaining calculus. For Horn logic, the result turns out to be
hyperresolution.

22.1 Variables in Forward Chaining

Variables in backward chaining in the style of Prolog are placeholders for
unknown terms. They are determined during unification, which occurs
when the head of a program clause is compared to the current goal.

The same strategy does not seem appropriate for forward chaining. As
a first example, consider

∀x.Q(x) ` Q(a).

This violates the restrictions imposed for the last lecture, because x occurs
in the head of ∀x.Q(x) but not its body (which is empty).

We cannot focus on the right-hand side since no Q() is in the context.
But we can focus on the assumption, ∀x.Q(x). We have to guess a substi-
tution term for x (which we will leave as a variable for now) and then blur
focus.

∀x.Q(x), Q(X) ` Q(a)

∀x.Q(x);Q(X) � Q(a)
blurL

∀x.Q(x);∀x.Q(x) � Q(a)
∀L

∀x.Q(x) ` Q(a)
focusL

LECTURE NOTES NOVEMBER 14, 2006

L22.2 Hyperresolution

Nothing within this focusing sequence gives us a clue to what X should be.
If we now focus on the right, we can see in the second phase that X should
be a in order to complete the proof.

But is the set ∀x.Q(x), Q(X) actually saturated, or can we focus on
∀x.Q(x) again? Since X is a placeholder, the proper interpretation of the
sequent ∀x.Q(x), Q(X) ` Q(a) should be:

There exists an X such that ∀x.Q(x), Q(X) ` Q(a).

Now it could be we need two instances of the universal quantifier, so we
might need to focus again on the left before anything else. An example of
this is

∀x.Q(x), Q(a) ⊃ Q(b) ⊃ Q′(c) ` Q′(c)

So a priori there is no local consideration to rule out focusing again on
the left to obtain the context ∀x.Q(x), Q(X), Q(Y), which is not redundant
with ∀x.Q(x), Q(X).

By extension of this argument we see that we cannot bound the num-
ber of times we need a universally quantified assumption. This means we
can never definitively saturate the context. The existential interpretation of
variables seems somehow incompatible with forward chaining and satura-
tion.

22.2 Parametric Assumptions

Looking again at the deduction steps

∀x.Q(x), Q(X) ` Q(a)

∀x.Q(x);Q(X) � Q(a)
blurL

∀x.Q(x);∀x.Q(x) � Q(a)
∀L

∀x.Q(x) ` Q(a)
focusL

we see that we lost a lot of information when blurring focus. We have
actually obtain Q(X) from the context without any restriction on what X

is. In other words, we have really derived “For any X, Q(X)”. When we
added it back to the context, it became existentially quantified over the
sequent: “For some X, . . . , Q(X) ` . . .”.

It would make no sense to exploit this genericity of X by restoring the
universal quantifier: we already know ∀x.Q(x). Moreover, we would be
introducing a connective during bottom-up reasoning which would violate
all principles of proof search we have followed so far.

LECTURE NOTES NOVEMBER 14, 2006

Hyperresolution L22.3

So we need to capture the fact that Q(X) holds for any X in the form
of a judgment. We write ∆ ` Q where ∆ is a context of variables. In a
typed setting, ∆ records the types of all the variables, but we ignore this
slight generalization here. Now we have two forms of assumptions A and
∆ ` Q. We call the latter parametric hypotheses or assumptions parametric in
∆. There is no need to allow general parametric assumptions ∆ ` A, al-
though research on contextual modal type theory suggests that this would
be possible. The variables in ∆ in a parametric assumption ∆`Q should be
considered bound variables with scope Q.

Parametric hypotheses are introduced in the blurring step.

Γ, (∆ ` Q) ` Q′ ∆ = FV(Q)

Γ;Q � Q′
blurL

We assume here that the sequent does not contain any free variables other
than those in Q. Because for the moment we are only interested in forward
chaining, this is a reasonable assumption. We discuss the issue of saturation
below.

Now we consider the other rules of the focusing system, one by one, to
see how to accomodate parametric hypotheses. We are restricting attention
to the Horn fragment with only synchronous atoms.

We now rule out (non-parametric) assumptions Q and just allow (∆`Q).
Closed assumptions Q are silently interpreted as (· ` Q).

The focusL rule is as before: we can focus on any non-parametric A. By
the syntactic restriction, this cannot be a Q, so we elide the side condition.

A ∈ Γ Γ;A � Q

Γ ` Q
focusL

The impliesL rule also remains the same.

Γ � Q1 Γ;A2 � Q

Γ;Q1 ⊃ A2 � Q
⊃L

For the ∀L rule we have to guess the substitution term t for x. This term t

may contain some free variables that are abstracted in the blur step.

Γ;A(t/x) � Q

Γ;∀x.A � Q
∀L

In the implementation t will be determined by unification, and we then
abstract over the remaining free variables.

LECTURE NOTES NOVEMBER 14, 2006

L22.4 Hyperresolution

Focusing on the right is as before; the change appears in the identity
rule

Γ � Q

Γ ` Q
focusR

(∆ ` Q′) ∈ Γ Q′θ = Q dom(θ) = ∆

Γ � Q
idL

Right focus on Q still fails if there is no appropriate (∆ ` Q′) and θ.

22.3 Unification and Generalization

As a next step, we make the unification that happens during forward chain-
ing fully explicit. This is the natural extension of matching during ground
forward chaining discussed in the last lecture.

A ∈ Γ Γ;A � Q

Γ ` Q
focusL

Γ � Q1 | θ Γ;A2θ � Q

Γ;Q1 ⊃ A2 � Q
⊃L

Γ;A(X/x) � Q X /∈ FV(Γ, A,Q)

Γ;∀x.A � Q
∀L

(∆ ` Q′) ∈ Γ
ρ renaming on ∆
Q′ρ

.
= Q | θ

Γ � Q | θ
idL

no rule if no such ∆ ` Q′, θ

Γ � Q | θ

Γ � Q | (·)

Γ ` Q
focusR

Γ, (∆ ` Q′) ` Q ∆ = FV(Q′)

Γ;Q′ � Q
blurL

We do not permit free variables in Q for a global goal Γ ` Q. This may be
reasonable at least on the Horn fragment if the renaming ρ always chooses
fresh variables, since during forward chaining we never focus on the right
except to complete the proof.

Reconsider an earlier example to see this system in action.

∀x.Q(x), Q(a) ⊃ Q(b) ⊃ Q′(c) ` Q′(c)

We must focus on ∀x.Q(x), which adds y ` Q(y) to the context.

∀x.Q(x), Q(a) ⊃ Q(b) ⊃ Q′(c), (y ` Q(y)) ` Q′(c)

Now we can focus on the second assumption, using substitutions a/y and
b/y for the two premisses and adding · ` Q′(c) to the context. Now we can
focus on the right to prove Q′(c).

LECTURE NOTES NOVEMBER 14, 2006

Hyperresolution L22.5

22.4 Saturation via Subsumption

In the ground forward chaining system of the last lecture we characterized
saturation by enforcing that a blur step must add something new to the
context Γ.

Γ, Q ` Q0 Q /∈ Γ

Γ;Q � Q0

blurL′

We must update this to account for parametric hypotheses ∆ ` Q. One
should think of this as standing for an infinite number of ground assump-
tions, Qθ where dom(θ) = ∆ and cod(θ) = ∅.

We can say that (∆`Q) adds nothing new to the context if every instance
Qθ is already an instance of a parametric assumption Q′. That is, for every
θ there exists (∆′

` Q′) ∈ Γ and θ′ such that Q′θ′ = Qθ. A tractable criterion
for this is subsumption. We way that (∆′

`Q′) subsumes (∆`Q) if there exists a
substitution θ′ with dom(θ′) = ∆′ and cod(θ′) ⊆ ∆ such that Q′θ′ = Q. Then
every instance Qθ is also an instance of Q′ since Qθ = (Q′θ′)θ = Q′(θ′θ).

The new blur rule then is

Γ, (∆ ` Q) ` Q0 no (∆′
` Q′) ∈ Γ subsumes (∆ ` Q)

Γ;Q � Q0

blurL′

As an example, if we have a theory such as

∀x. pos(s(x)),∀y. pos(y) ⊃ pos(s(y))

where, in fact, the second clause is redundant, we will saturate quickly.
After one step we assume (w ` pos(s(w))). Now focusing on the first as-
sumption will fail by subsumption, and focusing on the second will also
fail by subsumption. After unification during forward chaining we have to
ask if (u ` pos(s(s(u)))) is subsumed before adding it to the context. But it
is by the previous assumption, instantiating s(u)/w. Therefore the above
theory saturates correctly after one step.

Under this definition of saturation it is possible to represent a number of
decision procedures as saturating forward chaining search with subsump-
tion. In general, however, we are straying more from logic programming
into general theorem proving

22.5 Beyond Saturation

In many applications saturation may be possible, but suboptimal in the
sense that we would like to short-circuit and succeed as soon as possible.

LECTURE NOTES NOVEMBER 14, 2006

L22.6 Hyperresolution

An example is the program for unification in the previous lecture. As soon
as we have a contradiction to the assumption that two terms are unifiable,
we would like to stop forward-chaining. We can achieve this by adding
another synchronous connective to the logic: falsehood (⊥).

As a conclusion, if we are focused on ⊥ we fail. So, just as in backward
search, ⊥ as a goal represents failure.

As an assumption it is asynchronous, so we can succeed when we en-
counter it.

Γ;⊥ � C
⊥L

There is an implicit phase transition here, from focusing on ⊥ to asyn-
chronously decomposing ⊥ (which immediately succeeds).

In the unification example, the uses of contra can be replaced by ⊥,
which sometimes permits early success when a contradiction has been de-
rived.

This device is also used in theorem proving where we don’t expect to
saturate, but hope to derive ⊥ from the negation of a conjecture. At this
point we have left logic programming and are firmly in the real of general
purpose theorem proving: we no longer try to implement algorithms, but
try to search for a proof in a general way.

If we restrict ourselves to the Horn fragment (though allowing ⊥), and
every atom is synchronous then the strategy of forward chaining with free
variables presented here is also known as hyperresolution in the theorem
proving literature.

Once we have the possibility to succeed by creating a contradiction, it
is no longer necessary to have a relevant right-hand side. For example, in-
stead of proving Γ ` Q we can prove Γ, Q ⊃ ⊥ ` ⊥ entirely by forward
chaining on the left, without ever considering the right-hand side. Most
of the classical resolution literature and even early presentations of logic
programming use this style of presentation. The proof is entirely by con-
tradiction, and there is not even a “right-hand side” as such, just a database
of facts and rules Γ.

22.6 Splitting

If we also allow disjunction in the heads of clauses, but continue to force
all atoms to be synchronous, we can represent what is known in the the-
orem proving literature as splitting. Since disjunction is asynchronous on
the left, we need a new judgment form Γ;A ` C where A is broken down

LECTURE NOTES NOVEMBER 14, 2006

Hyperresolution L22.7

asynchronously. We transition into it when A is left asynchrounous, that is,
Q, ⊥, or A1 ∨ A2. We give here the ground version.

Γ;A ` C A = Q,⊥, A1 ∨ A2

Γ;A � C
blurL

Γ;⊥ ` C
⊥L

Γ;A1 ` C Γ;A2 ` C

Γ;A1 ∨ A2 ` C
∨L

Γ, A ` C A 6= ⊥, A1 ∨ A2

Γ;A ` C

Unfortunately, this extension interacts poorly with free variables and para-
metric hypotheses. If there is a variable shared between A1 and A2 in the
∨L rule, then it must be consistently instantiated on both sides and may not
be abstracted. In the theorem proving context the rule is therefore restricted
to cases where A1 and A2 share no free variables, which leaves the calculus
complete for classical logic. Here, in intuitionistic logic, such a restriction
would be incomplete.

When we move a formula A into Γ during decomposition of left asyn-
chronous operators, we need to be able to abstract over its free variables
even when the formula A is not atomic, further complicating the system.

To handle such situations we might allow existentially interpreted free
variables in the context, and abstract only over those that are not free else-
where in the sequent. However, then both subsumption and saturation
become questionable again. It seems more research is required to design a
larger fragment of intuitionistic logic that is amenable to a forward chaining
operational semantics with reasonable saturation and subsumption behav-
ior.

22.7 Historical Notes

Endowing assumptions with local contexts is a characteristic of contextual
modal type theory [3] and the proof theory of the Nabla quantifier (∇) [2].
The former matches the use here, but is somewhat more general. The latter
interprets the locally quantified variables as names subject to α conversion
but cannot be instantiated by arbitrary terms.

There are a number of papers about using saturating hyperresolution
as a decision procedure. A tutorial exposition and further references can be
found in a chapter in the Handbook of Automated Reasoning [1].

LECTURE NOTES NOVEMBER 14, 2006

L22.8 Hyperresolution

22.8 References

[1] Christian Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel
Tammet. Resolution decision procedures. In Alan Robinson and An-
drei Voronkov, editors, Handbook of Automated Reasoning, volume 2,
chapter 25, pages 1791–1849. Elsevier Science and MIT Press, 2001.

[2] Dale Miller and Alwen Tiu. A proof theory for generic judgments.
ACM Transactions on Computational Logic, 6(4):749–783, October 2005.

[3] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contex-
tual modal type theory. Submitted, September 2005.

LECTURE NOTES NOVEMBER 14, 2006

15-819K: Logic Programming

Lecture 23

Linear Monadic Logic Programming

Frank Pfenning

November 16, 2006

In this lecture we extend the observations about forward and backward
chaining from Horn logic to a rich set of linear connectives. In order to
control the interaction between forward and backward chaining we use a
monad to separate asynchronous from synchronous connectives. The re-
sult is the logic programming language LolliMon, which we illustrate with
some examples.

23.1 Separating Asynchronous and Synchronous Connectives

The observations we have made about focusing, forward chaining, and
backward chaining apply to various logics, including linear logic, which
was indeed the origin of the notion of focusing. But it is difficult to com-
bine forward and backward chaining and obtain a satisfactory operational
semantics.

The problem can be broadly described as follows. First, if all connec-
tives are asynchronous we obtain a clear and non-deterministically com-
plete backward chaining semantics. Second, on the Horn fragment with
only synchronous atoms we obtain a satisfactory forward chaining seman-
tics with saturation. However, adding more synchronous connectives, or
mixing synchronous with asynchronous connectives introduces a lot of un-
controlled non-determinism into the operational reading of programs. We
approach general theorem proving, leaving the predictable operational be-
havior of Prolog behind.

We do not rule out that it may be possible to obtain a satisfactory se-
mantics, but in this lecture we pursue a different path. We can control
the interaction between asynchronous and synchronous connectives and

LECTURE NOTES NOVEMBER 16, 2006

L23.2 Linear Monadic Logic Programming

therefore between backward and forward chaining by creating a firewall
between them called a monad. From the logical point of view a monad is a
so-called lax modal operator. We will explain its laws below. For now we just
note that we write {−} for the modal operator.

In a complex linear logic proposition we can identify the places where
we change from asynchronous to synchronous connectives or vice versa.
At the first transition we require the explicit monadic firewall; the second
transition is simply an inclusion. There is one exception, namely in a linear
implication we switch sides (if the implication appears on the right the an-
tecedent appears on the left), so we have to switch from asynchronous to
synchronous propositions to remain in the same phase of decomposition.

Asynch A ::= P | A1 & A2 | > | S1 (A2 | A1 ⊃ A2 | ∀x.A | {S}

Synch S ::= Q | S1 ⊕ S2 | 0 | S1 ⊗ S2 | 1 | !A | ∃x. S | A

Recall that P stands for asynchronous atoms and Q for synchronous
atoms. We observe that the exponential modality of linear logic, !, has a spe-
cial status: !A is synchronous but the subformula does not continue the syn-
chronous phase, but is asynchronous. Similarly, A1 ⊃ A2 is asynchronous,
but A1 in the antecedent which we might expect to be synchronous is in
fact asynchronous. We will briefly explain this phenomenon later in the
lecture.

We have been inclusive here, omitting only S1 ⊗! A2 and s
.
= t which

were necessary for residuation. The first is easy to add or define. Explicit
equality is omitted here because in this lecture we concentrate on proposi-
tional and modal aspects of computation (see Exercise 23.2).

23.2 The Lax Modality

In order for the lax modality to have the right effect in separating the for-
ward and backward chaining phases, we need to give it a proper logical
foundation. In this section we just present this logical meaning; later we
justify its role in the operational semantics. Since the semantics here is fully
general, and does not depend on the division into asynchronous and syn-
chronous operators, we just use B and C to stand for arbitrary proposition
in linear logic, augmented by the lax modality.

In addition to the usual judgment B true we have a new judgment on
propositions, B lax . This can given be many different readings. Let us think
of it for now as “B is true subject to some (abstract) constraint”. This means

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.3

that B lax is a weaker judgment then B true .

∆ `̀ B true

∆ `̀ B lax
lax

This is a rule concerned only with the judgment, not with the proposition
which remains unchanged. Of course, this rule is not invertible, or truth
and lax truth would coincide. As in the prior sections on linear logic we
omit the unrestricted context from the rules since it is generally just propa-
gated from conclusion to premisses.

The second property is a form of the cut principle: if we can derive B lax

we are allowed to assume B true , but only if we are deriving a lax conclu-
sion. This is so because deriving a lax conclusion permits a constraint.

If ∆B `̀ B lax and ∆C , B true `̀ C lax then ∆C ,∆B `̀ C lax .

This should always hold, which means it is admissible when formulated
as a rule of inference. This is not the case if we changed the conclusion to
C true since then we could derive the converse of the first rule, and truth
and lax truth collapse.

The right and left rules for the lax modality are now straightforward.

∆ `̀ B lax

∆ `̀ {B} true
{−}R

∆, B true `̀ C lax

∆, {B} true `̀ C lax
{−}L

Again, the conclusion of the {−}L rule is restricted to the form C lax ; al-
lowing C true here would be incorrect.

However, the other left rules in the sequent calculus must now per-
mit an arbitrary judgment J on the right-hand side, which could be either
C true or C lax where previously in could only be C true . The prior proof
of the admissibility of cut and the identity principle can be easily extended
to this fragment.

In terms of focusing, the modal operator looks at first a bit odd. In a
deduction (read bottom-up), we go from {B} true to B lax and from there
to B true .

On the right, the first transition is asynchronous: we can always strip
the modal operator. The second transition is synchronous: we may have to
wait for a left rule to be applied (specifically: to go from {C} true to C true

for some C) before we can prove B true.
On the left, the first transition is synchronous: we cannot remove the

modal operator until the right-hand side has the form C lax . The second

LECTURE NOTES NOVEMBER 16, 2006

L23.4 Linear Monadic Logic Programming

one, however, is asynchronous, because B true is a stronger assumption
than B lax .

We can also see this from the proof of the identity principle.

B true `̀ B true

B true `̀ B lax
lax

{B} true `̀ B lax
{−}L

{B} true `̀ {B} true
{−}R

There is a “silent” transition on the left-hand side from B lax to B true . Be-
cause the lax judgment is asynchronous as an assumption, we never need
to consider it on the left-hand side.

23.3 The Exponential Modality Revisited

Above we have seen that the lax modality internalizes the judgment of lax
truth, which is weaker than truth. Conversely, the exponential modality
!B of linear logic internalizes necessary truth (written B valid), which is
stronger than truth. Recall first the judgmental rule, given here with a more
general right hand-side J which could be C true or C lax .

Γ, B valid ;∆, B true `̀ J

Γ, B valid ;∆ `̀ J
copy

The cut-like principle encodes that B is valid if it is true, without using any
any truth assumptions.

If Γ; · `̀ B true and Γ, B valid ;∆ `̀ J then Γ;∆ `̀ J .

When we internalize validity as a modal connective we obtain the follow-
ing right and left rules.

Γ; · `̀ B true

Γ; · `̀ !B true
!R

Γ, B valid ;∆ `̀ J

Γ;∆, !B true `̀ J
!L

We see that the left rule expresses that if !B true then B valid . On the
right-hand side, however, we have a silent transition from !B true , through
B valid to B true .

From this we can easily derive the focusing behavior. !B is synchronous
on the right, but the judgment B valid is asynchronous. We therefore never
need to explicitly consider B valid as a conclusion.

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.5

Conversely, as an assumption !B is asynchronous and can be decom-
posed eagerly to B valid . However, the assumption B valid is synchronous
(no matter what B is), so we need keep it as as assumption that we can
focus on later.

This can also be seen from the proof of the identity principle.

B valid ;B true `̀ B true

B valid ; · `̀ B true
copy

B valid ; · `̀ !B true
!R

·; !B true `̀ !B true
!L

In summary, the judgment forms B lax and B valid interact with focus-
ing in the sense that B lax is synchronous as a conclusion (no matter what
B is) and B valid is asynchronous as a conclusion (again, no matter what
B is). This means B valid need never explicitly be considered as a conclu-
sion (it immediately becomes B true). Conversely B valid is synchronous
as an assumption and B lax is asynchronous as an assumption. This emans
B lax need never explicitly be considered as an assumption (it immediately
morphs into B true).

The asynchronous behaviors are only correct because of the modal re-
strictions: B valid would only appear on the right if the linear context is
empty, and B lax would only appear on the left if the conclusion is C lax

for some C .

23.4 The Lax Modality and Search

We now preview the operational behavior of LolliMon, which can be di-
vided into multiple phases derived from focusing. We will mostly build
on the intuition for forward and backward chaining from the preceding
lectures, except that linear forward chaining is more complex than just sat-
uration.

Asynchronous goal decomposition. Starting with an asynchronous goal
A true , we decompose it eagerly until we we come to either {S} true or
P true .

Backward chaining. If the goal is now of the form P true , we can focus
on an assumption and decompose it. However, the ultimate head that we
focus on must match P ; if we reach {S} instead we must fail because the

LECTURE NOTES NOVEMBER 16, 2006

L23.6 Linear Monadic Logic Programming

left rule for {−} is not applicable when the conclusion is P true . This turns
out to be a crucial advantage of having the lax modality, because if the
head were an unprotected S we could not fail, but would now have to
asynchronously decompose S.

Subgoals created during backward chaining are then solved in turn, as
usual for backward chaining.

Forward chaining. If the goal on the right is {S} true we exploit the fact
that the lax modality is asynchronous and reduce it to S lax . At this point
we could either focus on the left or focus on the right.

The operational semantics now prescribes a forward chaining phase. In
the presence of linearity, this is intentially not complete (see the discussion
of concurrency below). Nevertheless, we focus on an assumption and break
it down until the head is either P true or {S′} true . In the first case we fail,
because we are focusing on P true and it does not match the conclusion
(which is lax). In the case {S′} true we reduce it to S′ true which is then
asynchronously decomposed until we can focus on a new assumption. The
left rule for the lax modality is applicable here since the right-hand side is
of the form S lax .

We continue forward chaining until we reach both saturation and qui-
escence. Saturation means that any forward step will not add any new
assumption to Γ or ∆. Quiescence means we cannot focus on any linear
assumption.

Once we have reached saturation and quiescence, focusing on the left
is no longer possible, so we focus on the right, S lax , which becomes S true

under focus and is decomposed until we reach an asynchronous goal A to
restart a new phase.

We now consider each phase in turn, writing out the relevant judgments
and formal definition.

23.5 Asynchronous Goal Decomposition

We write this judgment as Γ;∆;Ψ `̀ A true . Here, Γ is a context of unre-
stricted assumptions A valid , ∆ is a context of linear assumptions A true ,
and Ψ is a context of ordered assumptions S true . Both A in the conclusion
and the propositions S in Ψ are the ones that are decomposed. The context
Ψ is ordered so we can restrict rules to operate on a unique proposition,
removing any non-determinism from the rules.

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.7

Γ;∆; · `̀ A1 Γ;∆; · `̀ A2

Γ;∆; · `̀ A1 & A2

&R
Γ;∆; · `̀ >

>R

Γ;∆;S1 `̀ A2

Γ;∆; · `̀ S1 (A2

(R
Γ, A1;∆; · `̀ A2

Γ;∆; · `̀ A1 ⊃ A2

⊃R

Γ;∆; · `̀ A x /∈ FV(Γ,∆)

Γ;∆; · `̀ ∀x.A
∀R

Γ;∆;S1,Ψ `̀ P Γ;∆;S2,Ψ `̀ P

Γ;∆;S1 ⊕ S2,Ψ `̀ P
⊕L

Γ;∆;0,Ψ `̀ P
0L

Γ;∆;S1, S2,Ψ `̀ P

Γ;∆;S1 ⊗ S2,Ψ `̀ P
⊗L

Γ;∆;Ψ `̀ P

Γ;∆;1,Ψ `̀ P
1L

Γ, A;∆;Ψ `̀ P

Γ;∆; !A,Ψ `̀ P
!L

Γ;∆;S,Ψ `̀ P x /∈ FV(Γ,∆, P)

Γ;∆;∃x. S,Ψ `̀ P
∃L

Γ;∆, Q; Ψ `̀ P

Γ;∆;Q,Ψ `̀ P
(Q)L

Γ;∆, A; Ψ `̀ P

Γ;∆;A,Ψ `̀ P
(A)L

Γ;∆ `̀ P

Γ;∆; · `̀ P
(P)R

Γ;∆ `̀ S lax

Γ;∆; · `̀ {S}
{−}R

The last two rules transition to new judgments which represent so-
called neutral sequents discussed in the next section.

23.6 Neutral Sequents

After an asynchronous decomposition has finished, we arrive at a neutral
sequent. In LolliMon, there are two forms of neutral sequent, depending
on whether the conclusion is true or lax. While the asynchronous decom-
position is deterministic and can never fail, we now must make a choice
about on which proposition to focus.

First, the case where the conclusion is P true . The possibilities for fo-
cusing initiate a backward chaining step.

Γ;∆;A � P A ∈ Γ

Γ;∆ `̀ P
copy

Γ;∆;A � P

Γ;∆, A `̀ P
focusL no focusR rule

Γ;∆ `̀ P

LECTURE NOTES NOVEMBER 16, 2006

L23.8 Linear Monadic Logic Programming

There is no way to focus on the right on an asynchronous atom since we
only focus on synchronous propositions. Note that all propositions in Γ
will be of the form A and therefore synchronous on the left. Similar, ∆
consists of propositions that are synchronous on the left except for Q, which
is analogous to allowing P on the right, and which may not be focused on.

When the conclusion is S lax we can focus either on the left or on the
right. Focusing on the left initiates a forward chaining step, focusing on the
right terminates a sequence of forward chaining steps.

Γ;∆;A � S lax A ∈ Γ

Γ;∆ `̀ S lax
copy

Γ;∆;A � S lax

Γ;∆, A `̀ S lax
focusL

Γ;∆ � S true

Γ;∆ `̀ S lax
focusR

We can see that a right-hand side S lax means we are forward chaining,
which we transition out of when when we focus in S true .

In a lower-level operational semantic specification we would add the
precondition to the focusR rule that no copy or focusL rule is possible,
indicating saturation and quiescence.

23.7 Backward Chaining

Backward chaining occurs when the right-hand side is P true and we are
focused on a proposition on the left. We refer to the right focus judgment
for implications.

Γ;∆;A1 � P

Γ;∆;A1 & A2 � P
&L1

Γ;∆;A2 � P

Γ;∆;A1 & A2 � P
&L2

no >L rule
Γ;∆;> � P

Γ;∆1;A1 � P Γ;∆2 � S2

Γ;∆1,∆2;S2 (A1 � P
(L

Γ;∆;A1 � P Γ; · � A2

Γ;∆;A2 ⊃ A1 � P
⊃L

Γ;∆;A(t/x) � P

Γ;∆;∀x.A � P
∀L

no {−}L rule

Γ;∆; {S} � P

Γ;∆;P � P
(P)L

not (P)L rule if P ′ 6= P

Γ;∆;P ′ � P

Critical is the absence of the {−}L rule: all forward chaining rules are dis-
allowed during backward chaining. The logical rules for the lax modality

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.9

anticipate this: the right-hand side would have to have to be a lax judg-
ment, but here it is truth. Without the monadic protection, this could not
be done in a logically justified and complete way.

The rules for right focus also belong under this heading since they are
invoked to terminate forward chaining or as a subgoal in backward chain-
ing. When the right-hand side becomes asynchronous we transition back
to the asynchronous decomposition judgment.

Γ;∆ � S1

Γ;∆ � S1 ⊕ S2

⊕R1

Γ;∆ � S2

Γ;∆ � S1 ⊕ S2

⊕R2
no 0R rule
Γ;∆ � 0

Γ;∆1 � S1 Γ;∆2 � S2

Γ;∆1,∆2 � S1 ⊗ S2

⊗R
Γ; · � 1

1R

Γ; ·; · `̀ A

Γ; · � !A
!R

Γ;∆ � S(t/x)

Γ;∆ � ∃x. S
∃R

Γ;∆; · `̀ A

Γ;∆ � A
(A)R

Γ;Q � Q
(Q)R no rule for ∆ 6= Q

Γ;∆ � Q

Focusing has strong failure conditions which are important to obtain
predictable behavior. These are contained in the “missing rules” for the
situations

Γ;∆; {S} � P true

Γ;∆;P ′ � P true for P ′ 6= P

Γ;∆ � Q for ∆ 6= Q

all of which fail. The first is justified via the modal laws of lax logic, the sec-
ond and third by properties of focusing on synchronous and asynchronous
atoms. It is also important that we cannot focus on P on the right or Q on
the left, which is again due to properties of focusing.

23.8 Forward Chaining

Forward chaining takes place when we focus on the left while the right-
hand side is a lax judgment S lax . We can forward chain only if the ultimate
head of the clause is a lax modality, which provides for a clean separation of
the two phases with a logical foundation, and could not be easily justified
otherwise as far as I can see.

The rules are mostly carbon copies of the left rules applied for forward
chaining, except in the order of the premisses in the implication rules and,

LECTURE NOTES NOVEMBER 16, 2006

L23.10 Linear Monadic Logic Programming

of course, the rules for P and {S}.

Γ;∆;A1 � S lax

Γ;∆;A1 & A2 � S lax
&L1

Γ;∆;A2 � S lax

Γ;∆;A1 & A2 � S lax
&L2

no >L rule
Γ;∆;> � S lax

Γ;∆1 � S1 Γ;∆1;A2 � S lax

Γ;∆1,∆2;S1 (A2 � S lax
(L

Γ; · � A1 Γ;∆;A2 � S lax

Γ;∆;A1 ⊃ A2 � S lax
⊃L

Γ;∆;A(t/x) � S lax

Γ;∆;∀x.A � S lax
∀L

no (P)L rule

Γ;∆;P � S lax

Γ;∆;S′ `̀ S lax

Γ;∆; {S′} � S lax
{−}L

We see Γ;∆;P � S lax as an additional failure mode, due to focusing.
The rules for asynchronous decomposition of S′ on the left once the

focusing phase has been completed, are carbon copies of the rules when
the conclusion is P true .

Γ;∆;S1,Ψ `̀ S lax Γ;∆;S2,Ψ `̀ S lax

Γ;∆;S1 ⊕ S2,Ψ `̀ S lax
⊕L

Γ;∆;0,Ψ `̀ S lax
0L

Γ;∆;S1, S2,Ψ `̀ S lax

Γ;∆;S1 ⊗ S2,Ψ `̀ S lax
⊗L

Γ;∆;Ψ `̀ S lax

Γ;∆;1,Ψ `̀ S lax
1L

Γ, A;∆;Ψ `̀ S lax

Γ;∆; !A,Ψ `̀ S lax
!L

Γ;∆;S′,Ψ `̀ S lax x /∈ FV(Γ,∆, S)

Γ;∆;∃x. S′,Ψ `̀ S lax
∃L

Γ;∆, Q; Ψ `̀ S lax

Γ;∆;Q,Ψ `̀ S lax
(Q)L

Γ;∆, A; Ψ `̀ S lax

Γ;∆;A,Ψ `̀ S lax
(A)L

23.9 Backtracking and Committed Choice

The system from the previous sections is sound and complete when com-
pared to intuitionistic linear logic with an added lax modality. This can be
proved by a cut elimination argument as for other focusing systems.

Now we consider some lower-level aspects of the operational seman-
tics. For backchaining with judgments Γ;∆;Ψ `̀ A, Γ;∆;A � P and
Γ;∆ � S, we solve subgoals from left to right, try alternatives from first-
to-last, and backtrack upon failure. Moreoever, choices of terms t are post-

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.11

poned and determined by unification. So the backchaining fragment of Lol-
liMon is fully consistent with pure Prolog and Lolli, that is, logic program-
ming in the asynchronous fragment of linear logic. It is weakly complete
which means that failure implies that a proof does not exist, but not all true
propositions can be proven due to potentially non-terminating depth-first
search.

For forward chaining, as defined by the judgments Γ;∆;A � S lax and
Γ;∆;S′ `̀ S lax we use committed choice selection of the assumption to fo-
cus on. Moreoever, we continue to forward chain until we reach saturation
and quiescence before we focus on the lax goal on the right. At present,
we would consider it an error if we encounter a free logic variable during
forward chaining because the semantics of this has not been satisfactorily
settled.

If the program does not use the linear context in an essential way (that
is, we are simulating unrestricted forward chaining in the linear setting),
then due to the monotonicity of the unrestricted assumptions we still have
non-deterministic completeness.

If the program does use the linear context then the system is complete in
only a very weak sense: if we can always happen to make the right choice
we can find a proof if it exists, but even if computation fails a proof might
still exist because we do not backtrack.

I believe that this is actually the desired behavior because linear for-
ward chaining was designed to model concurrency. The operational se-
mantics of forward chaining corresponds exactly to the operational seman-
tics of concurrent languages such as CCS or the π-calculus: if a transition
is possible it may be taken without any chance for backtracking over this
choice. This means programs are correct only if all legal computations be-
have correctly, such as, for example, avoiding deadlock. A corresponding
correctness criteria applies to LolliMon program that use linear forward
chaining: we must write the program in such a way that if multiple choices
can be made, each one will give a correct answer in the end. The example
in the next section illustrates this point.

As a programming language the logical fragment we have identified
here is quite rich, since it allows backward chaining, saturating forward
chaining, and linear forward chaining to capture many different sorts of
operational behavior. We have to guard against viewing it as a general pur-
pose inference engine. For example, it is often easy to write down a con-
current system as a linear LolliMon specification, but LolliMon presently
provides little help in analyzing such a specification beyond simulating in-
dividual runs. This is an interesting area of further research.

LECTURE NOTES NOVEMBER 16, 2006

L23.12 Linear Monadic Logic Programming

23.10 Checking Bipartiteness on Graphs

The literature contains some examples of LolliMon programs, as does the
LolliMon distribution. Many of the examples for forward chaining previ-
ously given in these notes such as CKY parsing or unification, can easily be
expressed in LolliMon. We give here one more example, checking whether
a given graph is bipartite, which illustrates a program that requires multi-
ple saturating phases of forward chaining, and combines linear and non-
linear forward chaining.

A graph is bipartite if there is a division of its nodes into just two sets
such that no two nodes in a set are connected to each other. Here is a high-
level description of algorithm to check if a graph is bipartite. We use two
colors, a and b to represent the two sets. We start with a graph where all
nodes are unlabeled.

1. If all nodes are labeled, stop. The graph is bipartite.

2. Otherwise, pick an unlabeled node and color it a.

3. Propagate until no further changes occur to the graph:

(a) If node u has color a and u is connected to w, color w with b.

(b) If node u has color b and u is connected to w, color w with a.

4. If there is a node with both colors a and b the graph is not bipartite.
Stop.

5. Otherwise, go to Step 1.

In the representation we have the following predicates, together with
their intended usage.

edge(u,w) unrestricted; true if there is an edge from u to w

unlabeled(u) linear; true of node u if it has not yet been labeled
label(u, c) unrestricted; true if node u has color c

notbip linear; true if graph is not bipartite

We start with the database initialized with unrestricted edge(u,w) and
linear unlabeled(u) facts.

notbip ◦− ∃U. !label(U, a) ⊗ !label(U, b) ⊗>.

notbip ◦− unlabeled(U) ⊗ (label(U, a) ⊃ {notbip}).

The first rule checks if there is a node with both colors and succeeds if that
is the case. The second consumes an unlabeled node U , assigns it color a,

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.13

saturates by forward chaining, and then recurses, starting the next itera-
tion of the algorithm. notbip fails if there is no two-colored node and no
unlabeled node, in which case the graph is indeed bipartite.

The first two forward chaining rules are straightforward.

!label(U, a) ⊗ !edge(U,W) ({!label(U, b)}.
!label(U, b) ⊗ !edge(U,W) ({!label(U, a)}.

The third rule contains the interaction between linear and unrestricted as-
sumptions: if a previously unlabeled node has been labeled, remove the
assumption that it is unlabeled.

!label(U,C) ⊗ unlabeled(U) ({1}.

Finally, a rule to take the symmetric closure of the edge relation, needed if
we do not want to assume the relation is symmetric to start with.

!edge(U,W) ({!edge(W,U)}.

Syntactically, edge(u,w), label(u, c), and notbip must be asynchronous
atoms. Atoms unlabeled(u) could be either synchronous or asynchronous,
and both posibilities execute correctly. A synchronous interpretation is
most natural. There is a version of this program where label is also linear, in
which case it would also be most naturally interpreted synchronously (see
Exercise 23.4).

23.11 Historical Notes

The presentation of the lax modality in the form presented here originates
with [3]; see that paper for further references on modal logic and monads.

LolliMon1 [2] is a relatively recent development. The language sup-
ported by the implementation and described in the paper is slightly differ-
ent from what we discussed here. In particular, all atoms are asynchronous,
and nested implications in forward chaining are processed in reverse or-
der to what we show here. Moreover, the implementation does not fully
support ⊕ and 0, but its term language is a simply-typed λ-calculus with
prefix polymorphism solved by pattern unification. One aspect of this is
discussed in the next lecture.

An example applying LolliMon in computer security is given by Po-
lakow and Skalka [4].

1Distribution available at http://www.cs.cmu.edu/~fp/lollimon/

LECTURE NOTES NOVEMBER 16, 2006

L23.14 Linear Monadic Logic Programming

LolliMon originated in the work on the Concurrent Logical Framework
(CLF) [6, 1]. CLF is a type theory for formalizing deductive systems sup-
porting state (through linearity) and concurrency (through a lax modality).
Its original formulation lacks disjunction (⊕) and falsehood (0), but per-
mits dependent types and a rich term language. The most recent and most
complete work on the foundation of CLF is by Watkins [5].

23.12 Exercises

Exercise 23.1 Extend the LolliMon language from this lecture, adding equality
s

.
= t and S ⊗! A, both of which are synchronous as goals and asynchronous as

assumptions.

Exercise 23.2 Some compound connectives in LolliMon are redundant and could
be eliminated. For example, A1 ⊃ A2 is equivalently expressed by (!A1) (A2.
Consider which connectives are redundant in this sense in the language.

Exercise 23.3 We have hinted in a prior lecture on resource management that,
though logically equivalent, certain connectives may still be important for opera-
tional reasons. For example, S ⊗! A and S ⊗ (!A) have different resource manage-
ment behavior. Reconsider the redundant operators you identified in response to
the Exercise 23.2 and determine which ones also have identical resource manage-
ment properties and which do not.

Exercise 23.4 Rewrite the program to check whether graphs are bipartite, making
the label predicate linear.

On this program, consider the assignment where both unlabeled and label are
synchronous and the one where both are asynchronous. Explain differences in
operational behavior, if any. Discuss which is more natural or potentially more
efficient.

23.13 References

[1] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A
concurrent logical framework II: Examples and applications. Technical
Report CMU-CS-02-102, Department of Computer Science, Carnegie
Mellon University, 2002. Revised May 2003.

[2] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Mon-
adic concurrent linear logic programming. In A.Felty, editor, Proceed-
ings of the 7th International Symposium on Principles and Practice of Declar-

LECTURE NOTES NOVEMBER 16, 2006

Linear Monadic Logic Programming L23.15

ative Programming (PPDP’05), pages 35–46, Lisbon, Portugal, July 2005.
ACM Press.

[3] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11:511–540,
2001. Notes to an invited talk at the Workshop on Intuitionistic Modal
Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[4] Jeff Polakow and Christian Skalka. Specifying distributed trust man-
agement in LolliMon. In S.Zdancewic and V.R.Sreedhar, editors, Pro-
ceedings of the Workshop on Programming Languages and Security, Ottawa,
Canada, June 2006. ACM.

[5] Kevin Watkins. CLF: A logical framework for concurrent systems. The-
sis Proposal, May 2003.

[6] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A
concurrent logical framework I: Judgments and properties. Technical
Report CMU-CS-02-101, Department of Computer Science, Carnegie
Mellon University, 2002. Revised May 2003.

LECTURE NOTES NOVEMBER 16, 2006

L23.16 Linear Monadic Logic Programming

LECTURE NOTES NOVEMBER 16, 2006

15-819K: Logic Programming

Lecture 24

Metavariables

Frank Pfenning

November 28, 2006

In this lecture we return to the treatment of logic variables. In Prolog and
some extensions we have considered, logic variables are global, and equa-
tions involving logic variables are solved by unification. However, when
universal goals ∀x.A are allowed in backward chaining, or existential as-
sumptions ∃x.A in forward chaining, new parameters may be introduced
into the proof search process. Ordinary unification on logic variables is
now unsound, even with the occurs-check. We generalize logic variables
to metavariables, a terminology borrowed from proof assistants and logical
frameworks, and describe unification in this extended setting.

24.1 Parameters

When proving a universally quantified proposition we demand that proof
to be parametric. In the rule this is enforced by requiring that x be new.

Γ;∆ `̀ A x /∈ FV(Γ,∆)

Γ;∆ `̀ ∀x.A
∀R

The condition on x can always be satisfied by renaming the bound vari-
able. Operationally, this means that we introduce a new parameter into the
derivation when solving a goal ∀x.A.

We already exploited the parametricity of the derivation for the admis-
sibility of cut by substituting a term t for x in the subderivation. The ad-
missibility of cut, rewritten here for lax linear logic, has the following form,
with J standing for either C true or C lax :

If
D

Γ;∆D `̀ A and
E

Γ;∆E , A `̀ J then
F

Γ;∆E ,∆D `̀ J .

LECTURE NOTES NOVEMBER 28, 2006

L24.2 Metavariables

Putting aside some issues related to the validity and lax judgments, this is
proved by a nested induction, first on the structure of the formula A, then
the two derivations D and E . One of the critical cases for quantification:

Case: D =

D1

Γ;∆D `̀ A1 x /∈ FV(Γ,∆D)

Γ;∆D `̀ ∀x.A1

∀R where A = ∀x.A1 and

E =

E1

Γ;∆E , A1(t/x) `̀ J

Γ;∆E ,∀x.A1 `̀ J
∀L.

Γ;∆D `̀ A1(t/x) By D1(t/x), noting x /∈ FV(Γ,∆D)
Γ;∆E,∆D `̀ J By ind.hyp. on A1(t/x), D1(t/x), E1

The induction hypothesis applies in (first-order) lax linear logic because
A1(t/x) may be considered a subformula of ∀x.A1 since it contains fewer
quantifiers and connectives. The condition x /∈ FV(Γ,∆D) is critical to
guarantee that D1(t/x) is a valid proof of Γ;∆D `̀ A1(t/x).

Parameters behave quite differently from logic variables in that during
unification they may not be instantiated. Indeed, carrying out such a sub-
stitution would violate parametricity. But parameters interact with logic
variables, which means that simply treating parameters as constants dur-
ing unifications is unsound.

24.2 Parameter Dependency

We consider two examples, ∀x.∃y. x
.
= y, which should obviously be true

(pick x for y), and ∃y.∀x. x
.
= y, which should obviously be false (in gen-

eral, there is not a single y equal to all x).

We consider the proof search behavior in these two examples. First, the
successful proof.

`̀ x
.
= x

.
=R

`̀ ∃y. x
.
= y

∃R

`̀ ∀x.∃y. x
.
= y

∀R

With logic variables and unification, this becomes the following, assuming

LECTURE NOTES NOVEMBER 28, 2006

Metavariables L24.3

we do not actually care to return the substitution.

x
.
= Y | (x/Y)

`̀ x
.
= Y

.
=R

`̀ ∃y. x
.
= y

∃R

`̀ ∀x.∃y. x
.
= y

∀R

Applying the substitution (x/Y) in the derivation leads to the first proof,
which is indeed valid.

Second, the unsuccessful proof. In the calculus without logic variables
we fail either because in the ∃R step the substitution is capture-avoiding
(so we cannot use x/y), or in the ∀R step where we cannot rename x to y.

fails
`̀ x

.
= y

`̀ ∀x. x
.
= y

∀R

`̀ ∃y.∀x. x
.
= y

∃R

In the presence of free variables we can apparently succeed:

x
.
= Y | (x/Y)

`̀ x
.
= Y

.
=R

`̀ ∀x. x
.
= Y

∀R

`̀ ∃y.∀x. x
.
= y

∃R

However, applying the substitution (x/Y) into the derivation does not
work, because Y occurs in the scope of a quantifier on x.

In order to prevent the second, erroneous solution, we need to prevent
(x/Y) as a valid result of unification.

24.3 Skolemization

At a high level, there are essentially three methods for avoiding the above-
mentioned unsoundness. The first, traditionally used in classical logics in a
pre-processing phase, is Skolemization. In classical logic we usually negate
the theorem and then try to derive a contradiction, in which case Skolem-
ization has a natural interpretation. Given an assumption ∀y.∃x.A(x, y),
for every y there exists an x such that A(x, y) is true. This means that there
must be a function f such that ∀y.A(f(y), y) because f can simply select
the appropriate x for every given y.

LECTURE NOTES NOVEMBER 28, 2006

L24.4 Metavariables

I don’t know how to explain Skolemization in the direct, positive form
except as a syntactic trick. If we replace universal quantifiers by a Skolem
function of the existentials in whose scope it lies, then ∃y.∀x. x

.
= y is trans-

formed to ∃y. f(y)
.
= y. Now if we pick an existential variable Y for y, then

f(Y) and Y are not unifiable due to the occurs-check.

Unfortunately, Skolemization is suspect for several reasons. In Prolog,
there is no occurs-check, so it will not work directly. In logics with higher-
order term languages, Skolemization creates a new function symbol f for
every universal quantifier, which could be used incorrectly in other places.
Finally, in intuitionistic logics, Skolemization can no longer be done in a
preprocessing phase, although it can still be employed.

24.4 Raising

Raising is the idea that existential variables should never be allowed to de-
pend on parameters. When confronted with an unsolvable problem such
as ∃y.∀x. x

.
= y this is perfect.

However, when a solution does exist, as in ∀x.∃y. x
.
= y we need to

somehow permit y to depend on x. We accomplish this by rotating the
quantifier outward and turning it into an explicit function variable, as in
∃y.∀x. x

.
= y(x). Now y can be instantiated with the identity function λz. z

to solve the equation. Note that y is does not contain any parameters as
specified.

Raising works better than Skolemization, but it does require a term lan-
guage allowing function variables. While this seems to raise difficult issues
regarding unification, we can make the functional feature so weak that uni-
fication remains decidable and most general unifiers continue to exist. This
restriction to so-called higher-order patterns stipulates that function variables
be applied only to a list of distinct bound variables. In the example above
this is the case: y is applies only to x. We briefly discuss this further in the
section on higher-order abstract syntax below.

24.5 Contextual Metavariables

A third possibility is to record with every logic variable (that is, metavari-
able) the parameters it may depend on. We write Σ ` X if the substitution
term for X may depend on all the parameters in Σ. As we introduce param-
eters into a deduction we collect them in Σ. As we create metavariables, we
collect them into another different context Θ, together with their contexts.
We write Θ;Σ; Γ;∆ `̀ A. No variable may be declared more than once. The

LECTURE NOTES NOVEMBER 28, 2006

Metavariables L24.5

right rules for existential and universal quantifiers are:

Θ;Σ, x; Γ;∆ `̀ A

Θ;Σ; Γ;∆ `̀ ∀x.A
∀R

Θ, (Σ ` X); Σ; Γ;∆ `̀ A(X/x)

Θ;Σ; Γ;∆ `̀ ∃x.A
∃R

By the convention that variables can be declared only once, we now omit
the condition and use renaming to achieve freshness of X and x. Unifica-
tion now also depends on Θ and Σ so we write Θ;Σ ` s

.
= t | θ.

Let us revisit the two examples above. First, the successful proof.

(x ` Y);x ` x
.
= Y | (x/Y)

(x ` Y);x `̀ x
.
= Y

.
=R

·;x; ·; · `̀ ∃y. x
.
= y

∃R

·; ·; ·; · `̀ ∀x.∃y. x
.
= y

∀R

The substitution in the last step is valid because Y is allowed to depend on
x due to its declaration x ` Y .

In the failing example we have

fails
(· ` Y);x ` x

.
= Y |

(· ` Y);x; ·; · `̀ x
.
= Y

.
=R

(· ` Y); ·; ·; · `̀ ∀x. x
.
= Y

∀R

·; ·; ·; · `̀ ∃y.∀x. x
.
= y

∃R

Now unification in the last step fails because the parameter x on the left-
hand side is not allowed to occur in the substitution term for Y .

We call metavariables Σ ` X contextual metavariables because they carry
the context in which they were created.

24.6 Unification with Contextual Metavariables

The unification algorithm changes somewhat to account for the presence of
parameters. The first idea is relatively straightforward: if (ΣX ` X) and we
unify X

.
= t, then we fail if there is a parameter in t not in ΣX .

But unification is a bit more subtle. Consider, for example, (x ` X) and
(x, y ` Y) and the problem X

.
= f(Y). In this case the substitution term for

X may only depend on x, but not on y. But Y is allowed to depend on y,
so just substituting f(Y)/X would be unsound if later Y were instantiated

LECTURE NOTES NOVEMBER 28, 2006

L24.6 Metavariables

with y. So we need to restrict Y to depend only on x. In general, for a
problem X

.
= t, we need to restrict any metavariable in t by intersecting its

context with ΣX .

Unfortunately, this means that unification must return a new Θ′ as well
as a substitution θ such that every free variable in the codomain of θ is
declared in Θ. We write

Θ;Σ ` t
.
= s | (Θ′ ` θ)

for this unification judgment, and similarly for term sequences.

t
.
= s | (Θ′

` θ)

Θ;Σ ` f(t)
.
= f(s) | (Θ′

` θ)

x ∈ Σ

Θ;Σ ` x
.
= x | (Θ′

` ·)

Θ;Σ ` t
.
= s | (Θ1 ` θ1) Θ1; Σ ` tθ1

.
= sθ1 | (Θ2 ` θ2)

Θ;Σ ` (t, t)
.
= (s, s) | (Θ2 ` θ1θ2)

Θ;Σ ` (·)
.
= (·) | (Θ ` ·)

Second, the cases for metavariables. We fold the occurs-check into the re-
striction operation.

Θ;Σ ` X
.
= X | (Θ; ·)

Θ ` t|X > Θ′

Θ;Σ ` X
.
= t | (Θ′

` t/X)

t = f(t) Θ ` t|X > Θ′

Θ;Σ ` t
.
= X | (Θ′

` t/X)

Finally, the restriction operator:

(ΣX ` X) ∈ Θ x ∈ ΣX

Θ ` x|X > Θ

no rule for ΣX ` X, x /∈ ΣX

Θ ` x|X > θ

Θ ` t|X > Θ′

Θ ` f(t)|X > Θ′ Θ ` (·)|X > Θ

Θ ` t|X > Θ1 Θ1 ` t|X > Θ2

Θ ` (t, t)|X > Θ2

X 6= Y ; (ΣX ` X) ∈ Θ

Θ, (ΣY ` Y) ` Y |X > Θ, (ΣY ∩ ΣX ` Y)
no rule for

Θ ` X|X >

LECTURE NOTES NOVEMBER 28, 2006

Metavariables L24.7

As indicated before, restriction can fail in two ways: in x|X if x /∈ ΣX and
when trying X|X . The first we call a parameter dependency failure, the
second an occurs-check failure. Overall, we also call restriction an extended
occurs-check.

24.7 Types

One of the reasons to be so pedantic in the judgments above is the now
straightforward generalization to the typed setting. The parameter con-
text Σ contains the type declarations for all the variables, and declaration
ΣX ` X : τ contains all the types for the parameters that may occur in the
substitution term for X. We can take this quite far to a dependent and poly-
morphic type theory and metavariables will continue to make sense. We
only mention this here; details can be found in the literature cited below.

24.8 Higher-Order Abstract Syntax

It has been my goal in this class to present logic programming as a gen-
eral paradigm of computation. It is my view that logic programming arises
from the study of the structure of proofs (since computation is proof search)
and that model-theoretic considerations are secondary. The liberation from
the usual concerns about Herbrand models and classical reasoning has
opened up a rich variety of new possibilities, including, for example, linear
logic programming for stateful and concurrent systems.

At the same time I have been careful to keep my own interests in appli-
cations of logic programming in the background, and have drawn exam-
ples from a variety of domains such as simple list manipulation, algorithms
on graphs, solitaire puzzles, decision procedures, dataflow analysis, etc. In
the remainder of this lecture and the next one I will go into some examples
of the use of logic programming in a logical framework, where the applica-
tion domain itself also consists of logics and programming languages.

One of the pervasive notions in this setting is variable binding. The
names of bound variables should not matter, and we should be able to sub-
stitute for them in a way that avoids capture. For example, in a proposition
∃y.∀x. x

.
= y we cannot substitute x for y because the binder on x would

incorrectly capture the substitution term for y. Substitution into a quantified
proposition is then subject to some conditions:

(∀x.A)(t/y) = ∀x.A(t/y) provided x 6= y and x /∈ FV(t).

LECTURE NOTES NOVEMBER 28, 2006

L24.8 Metavariables

These conditions can always be satisfied by (usually silently) renaming
bound variables, here x.

If we want to represent objects with variable binders (such as such as
quantified propositions) as terms in a metalanguage, the question arises on
how to represent bound variables. By far the most elegant means of accom-
plishing this is to represent them by corresponding bound variables in the
metalanguage. This means, for example, that substitution in the object lan-
guage is modeled accurately by substitution in the metalanguage without
any additional overhead. This is the basic idea behind higher-order abstract
syntax. A simple grammar decomposes terms into either abstractions or ap-
plications.

Abstractions b ::= x. b | t

Applications t ::= h(b1, . . . , bn)
Heads h ::= x | f

An abstraction x. b binds the variable x with scope b. An application is just
the term structure from first-order logic we have considered so far, except
that the head of the term may be a variable as well as a function symbol,
and the arguments are again abstractions.

These kinds of terms with abstractions are often written as λ-terms, us-
ing the notation λx.M . However, here we do not use abstraction to form
functions in the sense of functional programming, but simply to indicate
variable binding. We therefore prefer to think of λx.M as λ(x.M) and ∀x.A

as ∀(x.A), clearly representing variable binding in each case and thinking
of λ and ∀ as simple constructors.

We we substitute an abstraction for a variable, we may have to hered-
itarily perform substitution in order to obtain a term satisfying the above
grammar. For example, if we have a term lam(x.E(x)) and we substitute
(y.y)/E then we could not return (y.y) (x) (which is not legal, according to
our syntax), but substitute x for y in the body of the abstraction to obtain
lam(x. x).

(lam(x.E(x)))((y.y)/E)
= lam(x. (E(x))((y.y)/E))
= lam(x. y(x/y))
= lam(x. x)

Since one form of substitution may engender another substitution on em-
bedded terms we call it hereditary substitution.

A more detailed analysis of higher-order abstract syntax, hereditary
substitution, and the interaction of these notions with typing is beyond the

LECTURE NOTES NOVEMBER 28, 2006

Metavariables L24.9

scope of this course. We will use it in the next lecture in order to specify the
operational semantics of a programming language.

24.9 Historical Notes

Traditionally, first-order theorem provers have used Skolemization, either
statically (in classical logic), or dynamically (in non-classical logics) [13].
A clear presentation and solution of many issues connected to quantifier
dependencies and unification has been given by Miller [5].

The idea of higher-order abstract syntax goes back to Church’s type the-
ory [1] in which all variable binding was reduced to λ-abstraction. Martin-
Löf’s system of arities (mostly unpublished) was a system of simple types
including variable binding. Its important role in logical frameworks was
identified by several groups in 1986 and 1987, largely independently, and
with different applications: theorem proving [8], logic programming [6],
and logical frameworks [2].

In programming languages, the idea of mapping bound variables in an
object language to bound variables in a metalanguage is due to Huet and
Lang [3]. Its use in programming environments was advocated and further
analyzed by Elliott and myself [11]. This paper also coined the term “higher-
order abstract syntax” and is therefore sometimes falsely credited with the
invention of concept.

There are many operational issues raised by variable dependencies and
higher-order abstract syntax, most immediately unification which is impor-
tant in all three types of applications (theorem proving, logic programming,
and logical frameworks). The key step is Miller’s discovery of higher-order
patterns [4] for which most general unifiers still exist. I generalized this
latter to various type theories [9, 10].

The most recent development in this area is contextual modal type the-
ory [7] which gives metavariables first-class status within a type theory,
rather than consider them a purely operational artifact. A presentation of
unification in a slighly simpler version of this type theory can be found in
Pientka’s thesis [12].

24.10 Exercises

Exercise 24.1 Show an example that leads to unsoundness if parameter depen-
dency is not respected during unification using only hereditary Harrop formulas,
that it, the asynchronous fragment of intuitionistic logic.

LECTURE NOTES NOVEMBER 28, 2006

L24.10 Metavariables

24.11 References

[1] Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56–68, 1940.

[2] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Symposium on Logic in Computer Science, pages 194–
204. IEEE Computer Society Press, June 1987.

[3] Gérard Huet and Bernard Lang. Proving and applying program trans-
formations expressed with second-order patterns. Acta Informatica,
11:31–55, 1978.

[4] Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and Compu-
tation, 1(4):497–536, 1991.

[5] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Com-
putation, 14:321–358, 1992.

[6] Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Har-
rop formulas and uniform proof systems. In David Gries, editor, Sym-
posium on Logic in Computer Science, pages 98–105, Ithaca, NY, June
1987.

[7] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contex-
tual modal type theory. Submitted, September 2005.

[8] Lawrence C. Paulson. Natural deduction as higher-order resolution.
Journal of Logic Programming, 3:237–258, 1986.

[9] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[10] Frank Pfenning. Unification and anti-unification in the Calculus of
Constructions. In Sixth Annual IEEE Symposium on Logic in Computer
Science, pages 74–85, Amsterdam, The Netherlands, July 1991.

[11] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN ’88 Symposium on Language Design
and Implementation, pages 199–208, Atlanta, Georgia, June 1988.

[12] Brigitte Pientka. Tabled Higher-Order Logic Programming. PhD thesis,
Department of Computer Science, Carnegie Mellon University, De-
cember 2003. Available as Technical Report CMU-CS-03-185.

LECTURE NOTES NOVEMBER 28, 2006

Metavariables L24.11

[13] N. Shankar. Proof search in the intuitionistic sequent calculus. In
D. Kapur, editor, Proceedings of the 11th International Conference on Au-
tomated Deduction (CADE-11), pages 522–536, Saratoga Springs, New
York, June 1992. Springer-Verlag LNCS 607.

LECTURE NOTES NOVEMBER 28, 2006

L24.12 Metavariables

LECTURE NOTES NOVEMBER 28, 2006

15-819K: Logic Programming

Lecture 25

Substructural Operational Semantics

Frank Pfenning

November 30, 2006

In this lecture we combine ideas from the previous two lectures, linear
monadic logic programming and higher-order abstract syntax, to present
a specification technique for programming languages we call substructural
operational semantics. The main aim of this style of presentation is semantic
modularity: we can add new language features without having to rewrite
prior definitions for smaller language fragments. We determine that this is
mostly the case, although structural properties of the specification such as
weakening or contraction might change.

25.1 A Big-Step Natural Semantics

As a warm-up exercise, and also to understand the lack of modularity in
traditional specifications, we present the semantics for functional abstrac-
tion and application in a call-by-value language. This is called natural se-
mantics because of an analogy to natural deduction. The representation of
terms employs higher-order abstract syntax, as sketched in the last lecture.

Expressions e ::= x | lam(x. e) | app(e1, e2)

In the expression lam(x. e) the variable x is bound with scope e.

The main judgment is e ↪→ v, where e and v are expressions. This is a
big-step semantics, so the judgment directly relates e to its final value v.

lam(x. e) ↪→ lam(x. e)

e1 ↪→ lam(x. e′
1
) e2 ↪→ v2 e′

1
(v2/x) ↪→ v

app(e1, e2) ↪→ v

LECTURE NOTES NOVEMBER 30, 2006

L25.2 Substructural Operational Semantics

We represent e ↪→ v as neval(e, v). In the translation into a logic program-
ming notation using higher order abstract syntax we have to be careful
about variable binding. It would be incorrect to write the first rule as

neval(lam(x.E), lam(x.E))

because E is (implicitly) quantified on the outside, so we could not instan-
tiate with a term that contains x. Instead we must make any dependency
explicit with the technique of raising from last lecture.

neval(lam(x.E(x)), lam(x.E(x))).

Here, E(x) is a term whose head is a variable. For the second rule we see
how substitution is represented as application in the meta-language. E′

1

will be bound to an abstraction x. e′
1
, and E′

1
(V2) will carry out the substi-

tution of e′
1
(V2/x).

neval(app(E1, E2), V)←
neval(E1, lam(x.E′

1
(x))),

neval(E1, V2),
neval(E′

1
(V2), V).

25.2 Substructural Operational Semantics

In a judgment e ↪→ v the whole state of execution must be present in the
components of the judgment. This means, for example, when we add mu-
table store, we have to rewrite the judgment as 〈s, e〉 ↪→ 〈s′, v〉, where s

is the store before evaluation and s′ after. Now all rules (including those
for functions which should not be concerned with the store) have to be
updated to account for the store. Similar considerations hold for continua-
tions, exceptions, and other enrichments of the language.

Substructural operational semantics has an explicit goal to achieve a
more modular presentation, where earlier rules may not have to be revis-
ited. We achieve this through a combination of various ideas. One is the
that logical rules that permit contexts are parametric in those contexts. For
example, a left rule for conjunction

∆, A1 `̀ C true

∆, A1 & A2 `̀ C true

remains valid even if new connectives or new judgments are added. The
second idea is to evaluate expressions with explicit destinations whose na-
ture remains abstract. Destinations are implemented as parameters.

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.3

Substructural operational semantics employs linear and unrestricted
assumptions, although I have also considered ordered and affine assump-
tions. The conclusion on the right-hand is generally only relevant when
we tie the semantics into a larger framework, so we omit it in an abstract
presentation of the rules.

There are three basic propositions:

eval(e, d) Evaluate e with destination d

comp(f, d) Compute frame f with destination d

value(d, v) Value of destination d is v

Evaluation takes place asynchronously, following the structure of e. Frames
are suspended computations waiting for a value to arrive at some destina-
tion before they are reawakened. Values of destinations, once computed,
are like messages send to suspended frames.

In this first, pure call-by-value language, evaluations, computations,
and values are all linear. All the rules are left rules, although we do not
specify the right-hand side. A complete evaluation has the form

∆, value(d, v) `̀
....

∆, eval(e, d) `̀

where v is the value of e. We begin with expressions lam(x.E(x)) which are
values and returned immediately to the destination D.

∆, value(D, lam(x.E(x))) `̀

∆, eval(lam(x.E(x)),D) `̀

In applications we evaluate the function part, creating a frame that remem-
bers to evaluate the argument, once the function has been computed. For
this, we need to create a new destination d1. The derivation of the premiss
must be parametric in d1. We indicate this by labeling the rule itself with
[d1].

∆, comp(app1(d1, E2),D), eval(E1, d1) `̀

∆, eval(app(E1, E2),D) `̀
[d1]

When the expression E1 has been evaluated, we have to switch to evalu-
ating the argument E2 with a new destination d2., keeping in mind that
eventually we have to perform the function call.

∆, comp(app2(V1, d2),D), eval(E2, d2) `̀

∆, comp(app(D1, E2),D), value(D1, V1) `̀
[d2]

LECTURE NOTES NOVEMBER 30, 2006

L25.4 Substructural Operational Semantics

It may be possible to reuse the destination D1, but we are not interested
here in this kind of optimization. It might also interfere negatively with
extensibility later on if destinations are reused in this manner.

Finally, the β-reduction when both function and argument are known.

∆, eval(E′

1
(V2),D) `̀

∆, comp(app2(lam(x.E′

1
(x)),D2),D), value(D2, V2) `̀

25.3 Substructural Operational Semantics in LolliMon

It is easy to take the four rules of our substructural specification and imple-
ment them in LolliMon. We need here linear forward chaining and existen-
tial quantification to introduce new destinations. LolliMon’s term language
permits abstraction, so we can use this to implement higher-order abstract
syntax.

eval(lam(x.E(x)),D) ({value(D, lam(x.E(x)))}.

eval(app(E1, E2),D) ({∃d1. eval(E1, d1)⊗ comp(app1(d1, E2),D)}.

value(D1, V1)⊗ comp(app1(D1, E2),D)
({∃d2. eval(E2, d2)⊗ comp(app2(V1, d2),D)}.

value(D2, V2)⊗ comp(app2(lam(x.E′

1
(x)),D2),D) ({eval(E′

1
(V2),D)}.

The only change we have made to the earlier specification is to exchange
the order of eval, comp, and value propositions for a more natural threading
of destinations.

LolliMon combines forward and backward chaining, so we can also
write the top-level judgment to obtain the final value.

evaluate(E,V) ◦− (∀d0. eval(E, d0) ({value(d0, V)}).

25.4 Adding Mutable Store

We would now like to add mutable store to the operational semantics. We
have three new kinds of expressions to create, read, and assign to a cell of
mutable storage.

Expressions e ::= . . . | ref(e) | deref(e) | assign(e1, e2) | cell(c)

There is also a new kind of value cell(c) where c is a destination which
serves as a name for a cell of storage. Note that cell(c) cannot appear in the

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.5

source. In order to enforce this syntactically we would distinguish a type of
values from the type of expressions, something we avoid here for the sake
of brevity.

First, the rules for creating a new cell. I suggest reading these rules
from last to first, in the way they will be used in a computation. We write
the destinations that model cells at the left-hand side of the context. This is
only a visual aid and has no logical significance.

value(c1, V1),∆, value(D, cell(c1)) `̀

∆, comp(ref1(D1),D), value(D1, V1) `̀
[c1]

∆, comp(ref1(d1),D), eval(E1, d1) `̀

∆, eval(ref(E1),D) `̀
[d1]

We keep track of the value of in a storage cell with an assumption value(c, v)
where c is a destination and v is a value. While destinations to be used
as cells are modeled here as linear, they are in reality affine, that is, they
may be used at most once. The store, which is represented by the set of
assumptions value(ci, vi) will remain until the end of the computation.

Next, reading the value of a cell. Again, read the rules from the bottom
up, and the last rule first.

value(C1, V1),∆, value(D,V1) `̀

value(C1, V1),∆, comp(deref1(D1),D), value(D1, cell(C1)) `̀

∆, comp(deref1(d1),D), eval(E1, d1) `̀

∆, eval(deref(E1),D) `̀
[d1]

Next, assigning a value to a cell. The assignment assign(e1, e2) returns the
value of e2.

value(C1, V2), value(D,V2) `̀

value(C1, V1),∆, comp(assign2(cell(C1),D2),D), value(D2, V2) `̀

∆, comp(assign2(V1, d2),D), eval(E2, d2) `̀

∆, comp(assign1(D1, E2),D), value(D1, V1) `̀
[d2]

∆, comp(assign1(d1, E2),D), eval(E1, d1) `̀

∆, eval(assign(E1, E2),D) `̀
[d1]

LECTURE NOTES NOVEMBER 30, 2006

L25.6 Substructural Operational Semantics

Because values are included in expressions, we need one more rule for cells
(which are treated as values). Even if they do not occur in expressions
initially, the arise from substitutions of values into expressions.

∆, value(D, cell(C)) `̀

∆, eval(cell(C),D) `̀

All of these rules are just added to the previous rules for functions. We
have achieved semantic modularity, at least for functions and store.

Again, it is easy to turn these rules into a LolliMon program.

eval(ref(E1),D)
({∃d1. eval(E1, d1)⊗ comp(ref1(d1),D)}.

value(D1, V1)⊗ comp(ref1(D1),D)
({∃c1. value(c1, V1)⊗ value(D, cell(c1))}.

eval(deref(E1),D)
({∃d1. eval(E1, d1)⊗ comp(deref1(d1),D)}.

value(D1, cell(C1))⊗ value(C1, V1)⊗ comp(deref1(D1),D)
({value(C1, V1)⊗ value(D,V1)}.

eval(assign(E1, E2),D)
({∃d1. eval(E1, d1)⊗ comp(assign1(d1, E2),D)}.

value(D1, V1)⊗ comp(assign1(D1, E2),D)
({∃d2. eval(E2, d2)⊗ comp(assign2(V1, d2),D)}.

value(D2, V2)⊗ comp(assign2(cell(C1),D2),D)⊗ value(C1, V1)
({value(C1, V2)⊗ value(D,V2)}.

eval(cell(C),D)
({value(D, cell(C))}.

Written in SSOS form, the program evaluates e with some initial desti-
nation d0 as

∆, value(d0, v) `̀
....

eval(e, d0) `̀

where v is the value of e and

∆ = value(c1, v1), . . . , value(cn, vn)

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.7

for cells c1, . . . , cn. The matter is complicated further by the fact that ci, pa-
rameters introduced during the deduction, may appear in v. So we would
have to traverse v to eliminate references to ci, or we could just print it, or
we could create some form of closure over the store ∆. In either case, we
need to be sure to comsume ∆ to retain linearity overall. If we just want to
check termination, the top-level program would be

terminates(E) ◦− ∀d0. eval(E, d0) ({∃V. value(d0, V)⊗>}.

Here, the existential quantifier will be instantiated after forward chaining
reaches quiescence, so it is allowed to depend on all the parameters intro-
duced during forward chaining.

25.5 Adding Continuations

We now add callcc to capture the current continuation and throw to invoke
a continuation as an example of an advanced control-flow construct.

Expressions e ::= . . . | callcc(x. e) | throw(e1, e2) | cont(d)

The intuitive meaning is that callcc(x. e) captures the current continuation
(represented as the value cont(d)) and substitutes it for x in e, and that
throw(e1, e2) evaluates e1 to v1, e2 to a continuation k and then invokes k on
v1.

In linear destination-passing style, we use a destination d to stand for
a continuation. We invoke a continuation d on a value v simply by setting
value(d, v). Any frame waiting to receive a value can be activated in this
manner.

But this creates several problems in the semantics. To illustrate them,
we add z and s(e) for zero and successor, and a new frame s1(d) which
waits to increment the value returned to destination d. See Exercise 25.2 for
the rules.

Then an expression

s(callcc(k. s(throw(z, k))))

evaluates to s(z), never returning anything to the inner frame waiting to
calculate a successor. This means frames are no longer linear—they may be
ignored and therefore be left over at the end.

But the problems do not end there. Consider, for example,

app(callcc(k. lam(x. throw(lam(y. y), k))), z).

LECTURE NOTES NOVEMBER 30, 2006

L25.8 Substructural Operational Semantics

Because any λ-expression is a value, the callcc returns immediately and
applies the function lam(x. . . .) to z. This causes the embedded throw to
take place, this time applying lam(y. y) to z, yielding z as the final value. In
this computation, the continuation in place when the first argument to app

is evaluated is invoked twice: first, because we return to it, and then again
when we throw to it. This means frames may not only be ignored, but also
duplicated.

The solution is to make all frames comp(f, d) unrestricted throughout.
At the same time the other predicates must remain linear: eval(e, d) so that
there is only one thread of computation, and value(d, v) so that at any given
time there is at most one value v at any given destination d.

We present the semantics for callcc and related constructs directly in
LolliMon, which is more compact than the inference rule presentation.

eval(callcc(k.E(k)),D)
({eval(E(cont(D)),D)}.

eval(throw(E1, E2),D)
({∃d1. eval(E1, d1)⊗ !comp(throw1(d1, E2),D)}.

value(D1, V1)⊗ !comp(throw1(D1, E2),D)
({∃d2. eval(E2, d2)⊗ !comp(throw2(V1, d2),D)}.

value(D2, cont(D′

2
))⊗ !comp(throw2(V1,D2),D)

({value(D′

2
, V1)}.

eval(cont(D′),D)
({value(D, cont(D′))}.

Of course, all other rules so far must be modified to make the suspended
computations (which we now recognize as continuations) unrestricted by
prefixing each occurrence of comp(f, d) with ‘!’. The semantics is not quite
modular in this sense.

With this change we have functions, mutable store, and continuations
in the same semantics, specified in the form of a substructural operational
semantics.

25.6 Substructural Properties Revisited

The only aspect of our specification we had to revise was the substructural
property of suspended computations. If we step back we see that we can
use substructural properties of various language features for a kind of tax-
onomy.

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.9

Our first observation is that for functions alone it would have been suf-
ficient to keep the suspended computations next to each other and in or-
der. In such an ordered specification we would not even have needed the
destinations, because adjacency guarantees that values arrive at proper lo-
cations. We will leave this observation informal, rather than introducing a
version of LolliMon with an ordered context, although this would clearly
be possible.

If we add mutable store, then propositions value(d, v) remain linear,
while propositions value(c, v) for destinations d that act as cells are affine.
Continuations comp(f, d) are still linear, as are propositions eval(e, d).

If we further add a means to capture the continuation, then suspended
computations comp(f, d) must become unrestricted because we may either
ignore a continuation or return to it more than once. Values value(d, v) must
remain linear, as must evaluations eval(e, d). Storage cells remain affine.

With sufficient foresight we could have made suspended computations
comp(f, d) unrestricted to begin with. Nothing in the early semantics relies
on their linearity. On other hand, it is more interesting to see what struc-
tural properties would and would not work for various languages, and also
more natural to assume only the properties that are necessary.

25.7 Historical Notes

The presentation of a big-step operational semantics relating an expression
to its value by inference rules is due to Kahn [2] under the name natural
semantics. Earlier, Plotkin [6] developed a presentation of operational se-
mantics using rewrite rules following the structure of expressions under
the name structural operational semantics (SOS). I view substructural opera-
tional semantics as a further development and extension of SOS. Another
generalization to achieve modularity is Mosses’ modular structural opera-
tional semantics [4] which uses top-down logic programming and a form
of row polymorphism for extensibility.

To my knowledge, the first presentation of an operational semantics
in linear destination-passing style appeared as an example for the use of
the Concurrent Logical Framework (CLF) [1]. The formulation there was
intrinsically of higher order, which made reasoning about the rules more
difficult. The approach was formulated as an independent technique for
modular language specification in an invited talk [5], but only an abstract
was published. Further examples of substructural operational semantics
were given in the paper that introduced LolliMon [3].

LECTURE NOTES NOVEMBER 30, 2006

L25.10 Substructural Operational Semantics

Using ordered assumptions in logical frameworks and logic program-
ming was proposed by Polakow and myself [8, 7], although this work did
not anticipate monadic forward chaining as a computational mechanism.

25.8 Exercises

Exercise 25.1 Prove that the natural semantics and substructural semantics for
the functional fragment coincide in a suitable sense.

Exercise 25.2 Add natural number constants z and s(e) to our language specifi-
cation to permit more examples for callcc. Give formulations both in substructural
operational semantics and in LolliMon.

Exercise 25.3 Extend the functional language with unit, pairs, sums, void, and
recursive types as well as recursion at the level of expressions. Give a substructural
operational semantics directly in LolliMon.

Exercise 25.4 Think of other interesting control constructs, for example, for par-
allel or concurrent computation, and represent them in substructural operational
semantics.

Exercise 25.5 Give a specification of a call-by-value language where we do not
substitute a complete value for a term, but only the name for the destination which
holds the (immutable) value. Which is the proper substructural property for such
destinations?

Further extend this idea to capture a call-by-need semantics where arguments
are evaluated the first time they are needed and then memoized. This is the seman-
tics underlying lazy functional languages such as Haskell.

25.9 References

[1] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A
concurrent logical framework II: Examples and applications. Technical
Report CMU-CS-02-102, Department of Computer Science, Carnegie
Mellon University, 2002. Revised May 2003.

[2] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on The-
oretical Aspects of Computer Science, pages 22–39. Springer-Verlag LNCS
247, 1987.

LECTURE NOTES NOVEMBER 30, 2006

Substructural Operational Semantics L25.11

[3] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Mon-
adic concurrent linear logic programming. In A.Felty, editor, Proceed-
ings of the 7th International Symposium on Principles and Practice of Declar-
ative Programming (PPDP’05), pages 35–46, Lisbon, Portugal, July 2005.
ACM Press.

[4] Peter D. Mosses. Foundations of modular SOS. In Proceedings of the
24th International Symposium on Mathematical Foundations of Computer
Science (MFCS’99), pages 70–80, Szklarska Poreba, Poland, September
1999. Springer-Verlag LNCS 1672. Extended version available as BRICS
Research Series RS-99-54, University of Aarhus.

[5] Frank Pfenning. Substructural operational semantics and linear dest-
ination-passing style. In Wei-Ngan Chin, editor, Proceedings of the 2nd
Asian Symposium on Programming Languages and Systems (APLAS’04),
page 196, Taipei, Taiwan, November 2004. Springer-Verlag LNCS 3302.

[6] Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science Department,
Aarhus University, Aarhus, Denmark, September 1981.

[7] Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, Depart-
ment of Computer Science, Carnegie Mellon University, August 2001.

[8] Jeff Polakow and Frank Pfenning. Relating natural deduction and se-
quent calculus for intuitionistic non-commutative linear logic. In An-
dre Scedrov and Achim Jung, editors, Proceedings of the 15th Conference
on Mathematical Foundations of Programming Semantics, New Orleans,
Louisiana, April 1999. Electronic Notes in Theoretical Computer Sci-
ence, Volume 20.

LECTURE NOTES NOVEMBER 30, 2006

L25.12 Substructural Operational Semantics

LECTURE NOTES NOVEMBER 30, 2006

15-819K: Logic Programming

Lecture 26

Datalog

Frank Pfenning

December 5, 2006

In this lecture we describe Datalog, a decidable fragment of Horn logic.
Briefly, Datalog disallows function symbols, which means that the so-called
Herbrand universe of ground instances of predicates is finite. Datalog has
applications in databases and, more recently, in program analysis and re-
lated problems. We also sketch a promising new way to implement Datalog
via its bottom-up semantics using BDDs to represent predicates.

26.1 Stratified Negation

Datalog arises from Horn logic via two restrictions and an extension. The
most important restriction is to disallow function symbols: terms must be
variables or be drawn from a fixed set of constant symbols. The second
restriction is that any variable in the head of a clause also appears in the
body. Together these mean that all predicates are decidable via a simple
bottom-up, forward chaining semantics, since there are only finitely many
propositions that can arise. These propositions form the so-called Herbrand
universe.

If all domains of quantification are finite, we can actually drop the re-
striction on variables in clause heads, since a head such as p(x) just stands
for finitely many instances p(c1), . . . , p(cn), where c1, . . . , cn is an enumera-
tion of the elements of the domain of p.

In either case, the restriction guarantees decidability. This means it is
possible to add a sound form of constructive negation, called stratified nega-
tion. For predicates p and q we say p directly depends on q if the body of a
clause with head p(t) contains q(s). We write p ≥ q for the reflexive and
transitive closure of the direct dependency relation. If q does not depend

LECTURE NOTES DECEMBER 5, 2006

L26.2 Datalog

on p then we can decide any atom q(s) without reference to the predicate p.
This allows us to write clauses such as

p(t)← . . . ,¬q(s), . . .

without ambiguity: first we can determine the extension of q and then con-
clude ¬q(s) for ground term s if q(s) was not found to be true.

If the domains are infinite, or we want to avoid potentially explosive
expansion of schematics facts, we must slightly refine our restrictions from
before: any goal ¬q(s) should be such that s is ground when we have to
decide it, so it can be implemented by a lookup assuming that q has already
been saturated.

A Datalog program which is stratified in this sense can be saturated
by sorting the predicates into a strict partial dependency order and then
proceeding bottom-up, saturating all predicates lower in the order before
moving on to predicates in a higher stratum.

Programs that are not stratified, such as

p← ¬p.

or
p← ¬q.

q ← ¬p.

do not have such a clear semantics and are therefore disallowed. However,
many technical variations of the most basic one given above have been
considered in the literature.

26.2 Transitive Closure

A typical use of Datalog is the computation of the transitive closure of a
relation. We can also think of this as computing reachability in a directed
graph given the definition of the edge relation.

In the terminology of Datalog, the extensional data base (EDB) is given by
explicit (ground) propositions p(t). The intensional data base (IDB) is given
by Datalog rules, including possible stratified uses of negation.

In the graph reachability example, the EDB consists of propositions
edge(x, y) for nodes x and y defining the edge relation. The path relation,
which is the transitive closure of the edge relation, is defined by two rules
which constitute the IDB.

path(x, y)← edge(x, y).
path(x, y)← path(x, z), path(z, y).

LECTURE NOTES DECEMBER 5, 2006

Datalog L26.3

26.3 Liveness Analysis, Revisited

As another example of the use of Datalog, we revisit the earlier problem of
program analysis in a small imperative language.

l : x = op(y, z)
l : if x goto k

l : goto k

l : halt

We say a variable is live at a given program point l if its value will be read
before it is written when computation reaches l. Following McAllester, we
wrote a bottom-up logic program for liveness analysis and determined its
complexity using prefix firings as O(v·n) where v is the number of variables
and n the number of instructions in the program.

This time we take a different approach, mapping the problem to Data-
log. The idea is to extract from the program propositions in the initial EDB
of the following form:

• read(x, l). Variable x is read at line l.

• write(x, l). Variables x is written at line l.

• succ(l, k). Line k is a (potential) successor to line l.

The succ predicate depends on the control flow of the program so, for ex-
ample, conditional jump instructions have more than one successor. In ad-
dition we will define by rules (and hence in the IDB) the predicate:

• live(x, l). Variable x may be live at line l.

Like most program analyses, this is a conservative approximation: we may
conclude that a variable x is live at l, but it will never actually be read. On
the other hand, if live(x, l) is not true, then we know for sure that x can
never be live at l. This sort of information may be used by compilers in
register allocation and optimizations.

First, we describe the extraction of the EDB from the program. Every
program instruction expands into a set of assertions about the program

LECTURE NOTES DECEMBER 5, 2006

L26.4 Datalog

lines and program variables.

l : x = op(y, z) ↔

read(y, l)
read(z, l)
write(x, l)
succ(l, l + 1)

l : if x goto k ↔

read(x, l)
succ(l, k)
succ(l, l + 1)

l : goto k ↔ succ(l, k)

l : halt ↔ none

Here we assume that the next line l+1 is computed explicitly at translation
time.

Now the whole program analysis can be defined by just two Datalog
rules.

live(w, l) ← read(w, l).
live(w, l) ← live(w, k), succ(k, l),¬write(w, l).

The program is stratified in that live depends on read, write, and succ but
not vice versa. Therefore the appeal to negation in the second clause is
legitimate.

This is an extremely succinct and elegant expression of liveness anal-
ysis. Interestingly, it also provides a practical implementation as we will
discuss in the remainder of this lecture.

26.4 Binary Decision Diagrams

There are essentially two “traditional” ways of implementing Datalog: one
is by a bottom-up logic programming engine, the other using a top-down
logic programming engine augmented with tabling in order to avoid non-
termination. Recently, a new mechanism has been proposed using binary
decision diagrams, which has been shown to be particularly effective in large
scale program analysis.

We briefly review here binary decision diagrams (BDDs). To be more
precise, we will sketch the basics of reduced ordered binary decision diagrams
(ROBDDs) which are most useful in this context for reasons we will illus-
trate below.

LECTURE NOTES DECEMBER 5, 2006

Datalog L26.5

BDDs provide an often compact representation for Boolean functions.
We will use this by viewing predicates as Boolean functions from the argu-
ments (coded in binary) to either 1 (when the predicate is true) or 0 (when
the predicate is false).

As an example consider the following Boolean function in two vari-
ables, x1 and x2.

xor(x1, x2) = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

We order the variables as x1, x2 and then present a diagram in which the
variables are tested in the given order when read from top to bottom. When
a variable is false (0) we follow the dashed line downward to the next vari-
able, when it is true (1) we follow the solid line downward. When we reach
the constant 0 or 1 we have determined the value of the Boolean function
on the given argument values.

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC x2

0

�
�
�
� 1

KKKKKKKKKKKKKKKK
GFED@ABC x2

1

ssssssssssssssss
0

�
�
�
�

0 1

For example, to compute xor(1, 1) we start at x1 follow the solid line to the
right and then another solid line to the left, ending at 0 so xor(1, 1) = 0.

As a second simple example consider

and(x1, x2) = x1 ∧ x2

If we make all choices explicit, in the given order of variables, we obtain

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC x2

0
�
�

&

1

GFED@ABC x2
0

s
s

s
s

s
s

s
s

1

0 1

LECTURE NOTES DECEMBER 5, 2006

L26.6 Datalog

However, the test of x2 is actually redundant, so we can simplify this to the
following reduced diagram.

GFED@ABC x1

0

�
�
�
�
�
�
�
�
�
� 1

88
88

88
88

88

GFED@ABC x2
0

t
t

t
t

t
t

t
t

1

0 1

If we perform this reduction (avoiding unnecessary tests) and also share
identical sub-BDDs rather than replicating them, then we call the OBDD
reduced. Every Boolean function has a unique representation as an ROBDD
once the variable order is fixed. This is one of the properties that will prove
to be extremely important in the application of ROBDDs to Datalog.

Many operations on ROBDDs are straightforward and recursive, fol-
lowed by reduction (at least conceptually). We will see some more exam-
ples later and now just consider conjunction. Assume we have two Boolean
functions B(x1,x) and C(x1,x), where x represents the remaining vari-
ables. We notate B(0,x) = B0 and B(1,x) = B1 and similarly for C . We
perform the following recursive computation

GFED@ABC x1

0

�
�

�
�
� 1

33
33

33
33

3

B0 B1

∧ GFED@ABC x1

0

�
�
�
�
�

1

22
22

22
22

2

C0 C1

= GFED@ABC x1

0

	
	

	
	

	 1

55
55

55
55

5

B0 ∧ C0 B1 ∧ C1

where the result may need to be reduced after the new BDD is formed. If
the variable is absent from one of the sides we can mentally add a redun-
dant node and then perform the operation as given above. On the leaves
we have the equations

0 ∧B = B ∧ 0 = 0

and

1 ∧B = B ∧ 1 = B

LECTURE NOTES DECEMBER 5, 2006

Datalog L26.7

Other Boolean operations propagate in the same way; only the actions on
the leaves are different in each case.

There are further operations which we sketch below in the example as
we need them.

26.5 Datalog via ROBDDs

When implementing Datalog via ROBDDs we represent every predicate
as a Boolean function. This is done in two steps: based on the type of
the argument, we find out how many distinct constants can appear in this
argument (say n) and then represent them with log2(n) bits. The output of
the function is always 1 or 0, depending on whether the predicate is true
(1) or false (0). In this way we can represent the initial EDB as a collection
of ROBDDs, one for each predicate.

Now we need to apply the rules in the IDB in a bottom-up manner until
we have reached saturation. We achieve this by successive approximation,
starting with the everywhere false predicate or some initial approximation
based on the EDB. Then we compute the Boolean function corresponding
to the body of each clause and combine it disjunctively with the current ap-
proximation. When the result turns out to be equal to the previous approx-
imation we stop: saturation has been achieved. Fortunately this equality is
easy to detect, since Boolean functions have unique representations.

We discuss the kind of operations required to compute the body of
each clause only by example. Essentially, they are relabeling of variables,
Boolean combinations such as conjunction and disjunction, and projection
(which becomes an existential quantification).

As compared to traditional bottom-up strategy, where each fact is repre-
sented separately, we iterate over the whole current approximation of the
predicate in each step. If the information is regular, this leads to a lot of
sharing which can indeed be observed in practice.

26.6 An Example of Liveness Analysis

Now we walk through a small example of liveness analysis in detail in or-
der to observe the BDD implementation of Datalog in action. Our program
is very simple.

l0 : w0 = w1 + w1

l1 : if w0 goto l0
l2 : halt

LECTURE NOTES DECEMBER 5, 2006

L26.8 Datalog

To make things even simpler, we ignore line l2 an analyse the liveness of
the two variables w0 and w1 at the two lines l0 and l1. This allows us to
represent both variables and program lines with a single bit each. We use 0
for l0 and 1 for l1 and similarly for the variables w0 and w1. Then the EDB
we extract from the program is

read(1, 0) we read w1 at line l0
read(0, 1) we read w0 at line l1

succ(0, 1) line l1 succeeds l0
succ(1, 0) line l0 succeeds l1 (due to the goto)

write(0, 0) we write to w0 at line l0

Represented as a BDD, these predicates of the EDB become the following
three diagrams. We write x for arguments representing variables, k for
arguments representing line numbers, and index them by their position in
the order.

read(x1, k2) succ(k1, k2)

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC k2

0

�
�
�
� 1

JJJJJJJJJJJJJJJJJ
GFED@ABC k2

1

ttttttttttttttttt

0

�
�
�
�

0 1

GFED@ABC k1

0

�
�

�
�

� 1

77
77

77
77

77

GFED@ABC k2

0

�
�
�
� 1

JJJJJJJJJJJJJJJJ
GFED@ABC k2

1

tttttttttttttttt

0

�
�
�
�

0 1

write(x1, k2)

GFED@ABC x1

1

��
��
��
��
��
��
��
��
��
�� 0

8
8

8
8

8

GFED@ABC k2
1

uuuuuuuuuuuuuuuu

0

�
�
�
�

0 1

LECTURE NOTES DECEMBER 5, 2006

Datalog L26.9

Now recall the IDB rules.

live(w, l) ← read(w, l).
live(w, l) ← live(w, k), succ(k, l),¬write(w, l).

We initialize live with read, and use the notation live[0](x1, k2) to indicate it
is the initial approximation of live.

live[0](x1, k2)

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC k2

0

�
�
�
� 1

JJJJJJJJJJJJJJJJJ
GFED@ABC k2

1

ttttttttttttttttt

0

�
�
�
�

0 1

This takes care of the first rule. The second rule is somewhat trickier, partly
because of the recursion and partly because there is a variable on the right-
hand side which does not occur on the left. This corresponds to an existen-
tial quantification, so to be explicit we write

live(w, l)← ∃k. live(w, k), succ(k, l),¬write(w, l).

In order to compute the conjunction live[0](w, k)∧succ(k, l) we need to rela-
bel the variables so that the second argument for live is the same as the first
argument for succ. To write the whole relabeled rule, also using logical no-
tation for conjunction to emphasize the computation we have to perform:

live(x1, k3)← ∃k2. live(x1, k2) ∧ succ(k2, k3) ∧ ¬write(x1, k3).

We now proceed to calculate the right hand side, given the fully computed
definitions of succ and write and the initial approximation live[0]. The intent
is then to take the result and combine it disjunctively with live[0].

The first conjunction has the form live(x1, k2) ∧ succ(k2, k3). Now, on
each side one of the variables is not tested. We have lined up the corre-

LECTURE NOTES DECEMBER 5, 2006

L26.10 Datalog

sponding BDDs in order to represent this relabeling.

live[0](x1, k2) ∧ succ(k2, k3)

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC k2

0

�
�
�
�
�
�
�
�
�

1

88
88

88
88

88
88

88
88

88
88

88
8

GFED@ABC k2

1

��
��

��
��

��
��

��
��

��
��

��
�

0

�
�
�
�
�
�
�
�
�

0 1

GFED@ABC k2

0

�
�

�
�

� 1

77
77

77
77

77

GFED@ABC k3

0

�
�
�
� 1

JJJJJJJJJJJJJJJJ
GFED@ABC k3

1

tttttttttttttttt

0

�
�
�
�

0 1

Computing the conjunction according to our recursive algorithm yields the
following diagram. You are invited to carry out the computation by hand
to verify that you understand this construction.

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC k2

0

�

�
�

$

)

1

1

GFED@ABC k2

1

��
��

��
��

��
��

��
��

��
��

��
��

0

�
�
�
�

GFED@ABC k3

1

0

J
J

JJ
J

J
JJ

J
GFED@ABC k3

0

t
t

t
t t

t
t

t t

1

0 1

Now we have to conjoin the result with ¬write(x1, k3). We compute the
negation simply by flipping the terminal 0 and 1 nodes at bottom of the

LECTURE NOTES DECEMBER 5, 2006

Datalog L26.11

BDD, thus complementing the results of the Boolean function.

(live[0](x1, k2) ∧ succ(k2, k3)) ∧ ¬write(x1, k3)

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC k2

0

�

�
�

$

)

1

1

GFED@ABC k2

1

��
��

��
��

��
��

��
��

��
��

��
��

0

�
�
�
�

GFED@ABC k3

1

0

J
JJ

J
J

JJ
J

J
GFED@ABC k3

0

t
t

t t
t

t
t t

t

1

0 1

GFED@ABC x1

1

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�� 0

,
,

,
,

,
,

,
,

,
,

GFED@ABC k3
1

uuuuuuuuuuuuuuuu

0

�
�
�
�

1 0

After the recursive computation we obtain the diagram below.

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC k2

0

�

�
�

$

)

1

1

GFED@ABC k2

1

��
��

��
��

��
��

��
��

��
��

��
��

0

�
�
�
�

GFED@ABC k3

0
�
�

&

1

GFED@ABC k3
0

t t
t

t
t t

t
t

t

1

0 1

This diagram clearly contains some significant redundancies. First we no-
tice that the test of k3 on the left branch is redundant. Once we remove
this node, the test of k2 on the left-hand side also becomes redundant. In
an efficient implementation this intermediate step would never have been
computed in the first place, applying a technique such as hash-consing and
immediately checking for cases such as the one here.

LECTURE NOTES DECEMBER 5, 2006

L26.12 Datalog

After removing both redundant tests, we obtain

live(x1, k2) ∧ succ(k2, k3) ∧ ¬write(x1, k3)

GFED@ABC x1

0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� 1

88
88

88
88

88

GFED@ABC k2

1

��
��

��
��

��
��

��
��

��
��

��
��

0

�
�
�
�

GFED@ABC k3
0

u
u

u
u

u
u

u
u

1

0 1

Recall that the right-hand side is

∃k2. live(x1, k2) ∧ succ(k2, k3) ∧ ¬write(x1, k3).

It remains to account for the quantification over k2. In general, we compute
∃x1. B(x1,x) as B(0,x) ∨ B(1,x). In this example, the disjunction appears
at the second level and is easy to compute.

rhs(x1, k3) = ∃k2. live(x1, k2) ∧ succ(k2, k3) ∧ ¬write(x1, k3)

GFED@ABC x1

0

�
�
�
�
�
�
�
�
�
� 1

88
88

88
88

88

GFED@ABC k3
0

u
u

u
u

u
u

u
u

1

0 1

Now we rename again, k3 to k2 and disjoin it with live[0](x1, k2) to obtain

LECTURE NOTES DECEMBER 5, 2006

Datalog L26.13

live[1](x1, k2).

rhs(x1, k2) ∨ live[0](x1, k2) = live[1](x1, k2)

GFED@ABC x1

0

�
�
�
�
�
�
�
�
�
� 1

88
88

88
88

88

GFED@ABC k2
0

u
u

u
u

u
u

u
u

1

0 1

GFED@ABC x1

0

�
�

�
�

� 1

88
88

88
88

88

GFED@ABC k2

0

�
�
�
� 1

JJJJJJJJJJJJJJJJJ
GFED@ABC k2

1

ttttttttttttttttt

0

�
�
�
�

0 1

GFED@ABC x1

0

�
�

�
�

�
1

++
++

++
++

++
++

++
++

++
++

GFED@ABC k2

0

�
�
�
� 1

IIIIIIIIIIIIIIII

0 1

At this point we have gone through one iteration of the definition of live.
Doing it one more time actually does not change the definition any more
(live[2](x1, k2) = live[1](x1, k2)) so the database has reached saturation (see
Exercise 26.1).

Let us interpret the result in terms of the original program.

l0 : w0 = w1 + w1

l1 : if w0 goto l0
l2 : halt

The line from x1 to 1 says that variable w1 is live at both locations (we do
not even test the location), which we can see is correct by examining the
program. The path from x1 = 0 through k2 = 1 to 1 states that variable
w0 is live at l1, which is also correct since we read its value to determine
whether to jump to l0. Finally, the path from x1 = 0 through k2 = 0 to 0
encodes that variables w0 is not live at l0, which is also true since l0 does not
read w1, but writes to it. Turning this information into an explicit database
form, we have derived

live(w1, l0)
live(w1, l1)
live(w0, l1)
¬live(w0, l0) (implicitly)

where the last line would not be explicitly shown but follows from its ab-
sence in the saturated state.

LECTURE NOTES DECEMBER 5, 2006

L26.14 Datalog

While this may seem very tedious even in this small example, it has in
fact shown itself to be quite efficient even for very large programs. How-
ever, a number of optimization are necessary to achieve this efficiency, as
mentioned in the papers cited below.

26.7 Prospectus

BDDs were successfully employed in model checking for finite state sys-
tems. In our setting, this would correspond to a linear forward chaining
process where only the rules are unrestricted and facts are linear and thus
subject to change on each iteration. Moreover, the states (represented as
linear contexts) would have to satisfy some additional invariants (for ex-
ample, that each proposition occurs at most once in a context).

The research on Datalog has shown that we can use BDDs effectively for
saturating forward chaining computations. We believe this can be general-
ized beyond Datalog if the forward chaining rules have a subterm property
so that the whole search space remains finite. We only have to find a binary
coding of all terms in the search space so that the BDD representation tech-
nique can be applied.

This strongly suggests that we could implement an interesting fragment
of LolliMon which would encompass both Datalog and some linear logic
programs subject to model checking, using BDDs as a uniform engine.

26.8 Historical Notes

The first use of deduction in databases is usually ascribed to a paper by
Green and Raphael [3] in 1968, which already employed a form of resolu-
tion. The connection between logic programming, logic, and databases be-
came firmly established during a workshop in Toulouse in 1977; selected
papers were subsequently published in book form [2] which contained
several seminal papers in logic programming. The name Datalog was not
coined until the 1980’s.

BDDs were first proposed by Randy Bryant [1]. Their use for imple-
menting Datalog to statically analyze large programs was proposed and
shown to be effective by John Whaley and collaborators [4], with a number
of more specialized and further papers we do not cite here. The resulting
system, bddbddb (BDD-Based Deductive DataBase) is available on Source-
Forge1.

1http://bddbddb.sourceforge.net/

LECTURE NOTES DECEMBER 5, 2006

Datalog L26.15

26.9 Exercises

Exercise 26.1 Show all the intermediate steps in the iteration from live[1](x1, k2)
to live[2](x1, k2) and confirm that saturation has been reached.

Exercise 26.2 Consider a 4-vertex directed graph

v0

��

v3
oo

v1
// v2

``BBBBBBBB

Represent the edge relation as a BDD and saturate the database using the two rules
for transitive closure

path(x, y)← edge(x, y).
path(x, y)← path(x, z), path(z, y).

similer to the way we developed the liveness analysis example. Note that there are
4 vertices so they must be coded with 2 bits, which means that edge and path each
have 4 boolean arguments, two bits for each vertex argument.

Exercise 26.3 Give an encoding of another program analysis problem by showing
(a) the extraction procedure to construct the initial EDB from the program, and (b)
the rules defining the EDB.

26.10 References

[1] Randal E. Bryant. Graph-based algorithms for Boolean function manip-
ulation. IEEE Transactions on Computers, 35(8):677–691, August 1986.

[2] Hervé Gallaire and Jack Minker, editors. Logic and Data Bases. Plenum
Press, 1978. Edited proceedings from a workshop in Toulouse in 1977.

[3] C. Cordell Green and Bertram Raphael. The use of theorem-proving
techniques in question-answering systems. In Proceedings of the 23rd
ACM National Conference, pages 169–181, Washington, D.C., August
1968. ACM Press.

[4] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Us-
ing Datalog and binary decision diagrams for program analysis. In
K. Yi, editor, Proceedings of the 3rd Asian Symposium on Programming
Languages and Systems, pages 97–118, Tsukuba, Japan, November 2005.
Springer LNCS 3780.

LECTURE NOTES DECEMBER 5, 2006

L26.16 Datalog

LECTURE NOTES DECEMBER 5, 2006

15-819K: Logic Programming

Lecture 27

Constraint Logic Programming

Frank Pfenning

December 7, 2006

In this lecture we sketch constraint logic programming which generalizes
the fixed structure of so-called uninterpreted function and predicate sym-
bols of Horn logic. A common application is more flexible logic program-
ming with arithmetic and finite domains. Higher-order logic programming
is another example where techniques from constraint logic programming
are important.

27.1 Arithmetic

One of the main motivations for constraint logic programming comes from
the awkward and non-logical treatment of arithmetic in Prolog. For exam-
ple, a naive implementation of the Fibonacci function would be the follow-
ing Prolog program.

fib(0,1).

fib(1,1).

fib(N,F) :- N >= 2,

N1 is N-1, fib(N1,F1),

N2 is N-2, fib(N2,F2),

F is F1+F2.

Recall the use of is/2 to carry out evaluation of arithmetic predicates and
the built-in >=/2 to implement comparison between two ground terms.

Constraint logic programming supports interpreted function symbols
(here: addition and subtraction) as term constructors, which means that
we need to generalize unification to take into account the laws of arith-
metic. Moreover, built-in predicates (here: comparison) over the constraint

LECTURE NOTES DECEMBER 7, 2006

L27.2 Constraint Logic Programming

domain (here: integers) are no longer restricted to ground terms but are
treated specially as part of the constraint domain.

In a constraint logic programming language over the integers, we could
rewrite the above program as

fib(0,1).

fib(1,1).

fib(N,F1+F2) :- N >= 2, fib(N-1,F1), fib(N-2,F2).

With respect to this program, a simple query

?- fib(2,F-1).

is perfectly legitimate and should yield F = 1, but even more complex
queries such as

?- N < 20, fib(N,5).

and

?- N < 20, fib(N,6).

will succeed (in first case, with N = 5) or fail finitely (in the second case).
What emerges from the examples is that we need to extend ordinary

unification to handle more general equations, with terms from the con-
straint domain, and that we furthermore need to generalize from just equal-
ities to maintain other constraints such as inequalities.

27.2 An Operational Semantics with Constraints

Before we generalize to other domains, we return to the usual domain of
first-order terms and reformulate proof search. The idea is to replace unifi-
cation by equality constraints.

We use the residuated form of programs in order to isolate the various
choices and appeals to unification. Recall the language of goals G, goal
stacks S and failure continuations F . We only consider the Horn fragment,
so the program is fixed. Moreoever, we assume there is exactly one residu-
ated program clause Dp for every predicate p.

Goals G ::= P | G1 ∧G2 | > | G1 ∨G2 | ⊥ | ∃x.G | s
.
= t

Programs D ::= ∀x. p(x)← G

Goal Stacks S ::= > | G ∧ S

Failure Conts. F ::= ⊥ | (G ∧ S) ∨ F

The operational semantics is given by three judgments.

LECTURE NOTES DECEMBER 7, 2006

Constraint Logic Programming L27.3

• G / S / F . Solve G under goal stack S with failure continuation F .

• s
.
= t | θ. Unification of s and t yields most general unifier θ.

• s
.
= t 6 |. Terms s and t are not unifiable.

We now add to this a constraint store C , for now just consisting of equa-
tions.

Constraints C ::= > | s
.
= t ∧C

The first new judgment is

• G / S / C / F . Solve G under goal stack S and constraint C with
failure continuation F .

First, the rules for conjunction, which are not affected by the constraint
except that they carry them along.

G1 / G2 ∧ S / C / F

G1 ∧G2 / S / C / F

G2 / S / C / F

> / G2 ∧ S / C / F > / > / C / F

We can see in the rule for final success that the constraint C represents a
form of the answer. In practice, we project the constraints down to the
variables occurring in the original query, although we do not discuss the
details of the projection operation in this lecture.

For disjunction we have to remember the constraint as well as the suc-
cess continuation.

G1 / S / C / (G2 ∧ S ∧ C) ∨ F

G1 ∨G2 / S / C / F

G2 / S / C / F

⊥ / S′ / C ′ / (G2 ∧ S ∧ C) ∨ F

no rule for
⊥ / S / C / ⊥

Predicate calls in residuated form do not involve unification, so they
remain unchanged from the unification-based semantics. Existential quan-
tification is also straightforward.

(∀x. p(x)← G) ∈ Γ G(t/x) / S / C / F

p(t) / S / C / F

G(X/x) / S / C / F X 6∈ FV(S,C, F)

∃x.G / S / C / F

LECTURE NOTES DECEMBER 7, 2006

L27.4 Constraint Logic Programming

For equations, we no longer want to appeal to unification. Instead, we
check if the new equation s

.
= t together with the ones already present in C

are still consistent. If so, we add the new constraint s
.
= t; if not we fail and

backtrack.

s
.
= t ∧C 6` ⊥ > / S / s

.
= t ∧ C / F

s
.
= t / S / C / F

s
.
= t ∧C ` ⊥ ⊥ / S / C / F

s
.
= t / S / C / F

We use a new judgment form, C ` ⊥, to check if a set of constraints is
consistent. It can be implemented simply by the left rules for equality, or
by the forward chaining rules for unification described in an earlier lecture.
The interpretation of variables, however, is a bit peculiar. The variables in
a constraint C as part of the G / S / C / F are (implicitly) existentially
quantified. When we ask if the constraints are inconsistent we mean to
check that ¬∃X. C , that is, there does not exist a substitution t/X which
makes C(t/X) true. We check this by assuming ∃X. C and trying to derive
a contradiction. This means we introduce a new parameter x for each logic
variable X and actually try to prove C(x/X) where each of the variables x

is fresh. Since we are in the Horn fragment, we omitted this extra step of
back-substituting parameters since there is only one kind of variable.

An interesting point about the semantics above is that we no longer use
or need substitutions θ. Whenever a new equation arrives we make sure the
totality of all equations encountered so far still has a solution and continue.

27.3 An Alternative Operational Semantics with Constraints

As noted, the treatment of variables in the above semantics is somewhat
odd. We introduce them as logic variables, convert them to parameters to
check consistency. But we never use them for anything else, so why intro-
duce them as logic variables in the first place? Another jarring aspect of the
semantics is that the work that goes into determining that the equations are
consistent (for example, with the left rules for unifiability from an earlier
lecture) is lost after the check, and we may have to redo a good bit of work
when the next equality is encountered. In other words, the constraints are
not solved incrementally.

This suggests the following change in perspective: rather than trying to
prove that there exists a unifying substitution, we think of search as trying
to characterize all unifying substitutions. We still need to treat the case
that there are none as special (so we can fail), but otherwise we just assume
constraints. Reverting back to pure logic for a moment, a sequent C ` A

LECTURE NOTES DECEMBER 7, 2006

Constraint Logic Programming L27.5

with parameters x holds if any substitution t/x which makes C true also
makes A true.

Once constraints appear on the left-hand side, they can be treated with
the usual left rules. The main judgment is now C ` G / S / F for a set of
constraints C where we maintain the invariant that C is always satisfiable
(that is, it is never the case that C ` ⊥). This should be parenthesized as
(C ` G / S) / F because the constraints C do not apply to F .

For most of the rules from above this is a mere notational change. We
a few interesting cases. We generalize the left-hand side slightly to be a
collection of constraints C instead of a single one.

C ` G1 / S / (C ` G2 ∧ S) ∨ F

C ` G1 ∨G2 / S / F

C ` G2 / S / F

C′ ` ⊥ / S′ / (C ` G2 ∧ S) ∨ F

no rule for
C ` ⊥ / S / ⊥

Existential quantification now introduces a new parameter.

C ` G / S / F x 6∈ FV(S, C, F)

C ` ∃x.G / S / F

We avoid the issue of types and a typed context of parameters as we dis-
cussed in the lecture of parameters.

Equality is now treated differently.

C, s
.
= t 6` ⊥ C, s

.
= t ` > / S / F

C ` s
.
= t / S / F

C, s
.
= t ` ⊥ C ` ⊥ / S / F

C ` s
.
= t / S / F

Now there is scope for various left rules concerning equality. The sim-
plest example is the left rule for equality discussed in an earlier lecture.
This actually recovers the usual unification semantics!

s
.
= t | θ (Cθ ` Gθ / Sθ) / F

(C, s
.
= t ` G / S) / F

Note that the other case of the left rule (where s and t do not have a unifier)
cannot arise because of our satisfiability invariant which guarantees that a
unifier exists.

We can also use the small-step rules dealing with equality that will
never apply a substitution, just accumulate information about the vari-
ables. For example, knowing x

.
= c for a constant c carries the same in-

formation as applying the substitution c/x.

LECTURE NOTES DECEMBER 7, 2006

L27.6 Constraint Logic Programming

These left rules will put a satisfiable constraint into a kind of reduced
form and in practice this is combined with the satisfiability check. This
means constraints are treated incrementally, which is of great practical im-
portance especially in complex constraint domains.

As a final remark, we come back to focusing. The rules for equality
create a kind of non-determinism, because either we could solve a goal or
we could break down the equality we just assumed. However, the rules for
equality are asynchronous on the left and can be reduced eagerly until we
get irreducible equations. In a complete, lower-level semantics this should
be addressed explicitly; we omit this step here and leave it as Exercise 27.1.

27.4 Richer Constraint Domains

The generalization to richer domains is now not difficult. Instead of just
equalities, the constraint C (or the constraint collection C) contains other
interpreted predicate symbols such as inequalities of even disequalities.
When encountering an equality or interpreted predicate we verify its con-
sistency, adding it to the set of constraints.

In addition we allow either constraint simplification, or saturate left
rules for the predicates in the constraint domain. The simplification al-
gorithms depend significantly on the particular constraint domains. For
example, for arithmetic equalities we might use Gaussian elimination, for
arithmetic inequalities the simplex algorithm. In addition we need to con-
sider combinations of constraint domains, for which there are general ar-
chitectures such as the Nelson-Oppen method for combining decision pro-
cedures.

A particularly popular constraint domain is Finite Domains (FD), which
is supported in implementations such as GNU Prolog. This also supports
bounded arithmetic as a special case. We will not go into further detail,
except to say that the Fibonacci example is expressible in several constraint
languages.

27.5 Hard Constraints

An important concept in practical constraint domains is that of a hard con-
straint. Hard constraints may be difficult to solve, or may even be unde-
cidable. The general strategy in constraint programming language is to
postpone the solution of hard constraints until further instantiations make
them tractable. An example might be

?- X * Y = 4, X = 2.

LECTURE NOTES DECEMBER 7, 2006

Constraint Logic Programming L27.7

When we see X * Y = 4, the equation is non-linear, so we would be justi-
fied in raising an exception if the domain was supposed to treat only linear
equations. But when we receive the second constraint, X = 2, we can sim-
plify the first constraint to be linear 2 * Y = 4 and simplify to Y = 2.

When hard constraints are left after overall “success”, the success must
be interpreted conditionally: any solution to the remaining hard constraints
yields a solution to the overall query. It is even possible that the hard con-
straints may have no solution, negating an apparent success, so extra care
must be taken when the interpreter admits hard constraints.

Hard constraints arise naturally in arithmetic. Another domain where
hard constraints play a significant role is that of terms containing abstrac-
tions (higher-order abstract syntax), where constraint solving is a form of
higher-order unification. This is employed, for example, in the Twelf sys-
tems, where hard constraints (those falling outside the pattern fragment)
are postponed and reawakened when more information may make them
tractable.

27.6 Detailed Example

As our example we consider the Fibonacci sequence again.

fib(0,1).

fib(1,1).

fib(N,F1+F2) :- N >= 2, fib(N-1,F1), fib(N-2,F2).

We use it in this direct form, rather then the residuated form for brevity. We
consider the query

?- N < 10, fib(N,2).

which inverts the Fibonacci functions, asking for which n < 10 we have
fib(n) = 2. The bound on n is to avoid possible non-termination, although
here it would only affect search after the first solution. Inverting the Fi-
bonacci function directly as with this query is impossible with ordinary
Prolog programs.

Below we show G / S / C , omitting the failure continuation and
silently simplifying constraints on occasion. We avoid redundant “ ∧ >”
and use Prolog notation throughout. Furthermore, we have substituted for
the first occurrence of a variable in a clause head instead of building an
equality constraint.

LECTURE NOTES DECEMBER 7, 2006

L27.8 Constraint Logic Programming

N < 10, fibr(N,2) / true / true

fib(N,2) / true / N < 10

% trying clause fib(0,1)

% 0 = N , 1 = 2, N < 10 is inconsistent

% trying clause fib(1,1)

% 1 = N , 1 = 2, N < 10 is inconsistent

% trying clause fib(N,F1+F2) :- ...

F1+F2 = 2 / N >= 2, fib(N-1,F1), fib(N-2,F2) / N < 10

N >= 2 / fib(N-1,F1), fib(N-2,F2) / F1 = 2-F2, N < 10

fib(N-1,F1) / fib(N-2,F2) / F1 = 2-F2, 2 <= N, N < 10

% trying clause fib(0,1)

% 0 = N-1, 1 = F1, F1 = 2-F2, 2 <= N, N < 10 is incons.

% trying clause fib(1,1)

1 = N-1, 1 = F1 / fib(N-2,F2) / F1 = 2-F2, 2 <= N, N < 10

fib(N-2,F2) / true / F1 = 2-F2, N = 2

% trying clause fib(0,1)

0 = N-2, 1 = F2 / true / F1 = 2-F2, N = 2

true / true / 0 = N-2, 1 = F2, F1 = 2-F2, N = 2

true / true / N = 2, F2 = 1, F1 = 1

Even though GNU Prolog offers finite domain constraints, including
integer ranges, the Fibonacci program above does not quite run as given.
The problem is that, in order to be backward compatible with Prolog, the
predicates of the constraint domain (including equality) must be separated
out. The naming convention is to precede a predicate with # to obtain the
corresponding constraint predicate (assuming it is defined). Here is a bi-
directional version of the Fibonacci predicate in GNU Prolog.

fibc(0,1).

fibc(1,1).

fibc(N,F) :- N #>= 2,

N1 #= N-1, fibc(N1,F1),

N2 #= N-2, fibc(N2,F2),

F #= F1+F2.

With this predicate we can execute queries such as

?- N #< 10, fibc(N,8).

(which succeeds) and

?- N #< 10, fibc(N,9).

LECTURE NOTES DECEMBER 7, 2006

Constraint Logic Programming L27.9

(which fails). A query

?- N < 10, fibc(N,8).

would signal an error, because the first argument to < is not ground.

27.7 Historical Notes

Constraint logic programming was first proposed by Jaffar and Lassez [3].
The first practical implementation was by Jaffar and Michaylov [4], the full
CLP(R) language and system later described by Jaffar et al. [5]. A related
language is Prolog III [1] which combines several constraint domains. The
view of higher-order logic programming as constraint logic programming
was advanced by Michaylov and myself [8, 6].

The architecture of cooperating decision procedures is due to Nelson
and Oppen [7].

In the above constraint logic programming language the constraints
and their solution algorithms are hard-wired into the language. The sub-
language of Constraint Handling Rules (CHR) [2] aims at allowing the
specification of constraint simplification within the language for greater
flexibility. It seems that this is a fragment of LolliMon, specifically, its linear
forward chaining sublanguage, which could be the basis for a more logical
explanation of constraints and constraint simplification in logic program-
ming.

27.8 Exercises

Exercise 27.1 Write a semantics for Horn logic where unification is replaced by
incremental constraint solving as sketched in this lecture. Make sure your rules
have no unwanted non-determinism, that is, they can be viewed as a deterministic
abstract machine.

27.9 References

[1] Alain Colmerauer. An introduction to Prolog III. Communications of the
ACM, 33(7):69–90, 1990.

[2] Thom Früwirth. Theory and practice of constraint handling rules. Jour-
nal of Logic Programming, 17(1–3):95–138, October 1998.

[3] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the 14th Annual Symposium on Principles of Programming
Languages, pages 111–119, Munich, Germany, January 1987. ACM Press.

LECTURE NOTES DECEMBER 7, 2006

L27.10 Constraint Logic Programming

[4] Joxan Jaffar and Spiro Michaylov. Methodology and implementation of
a CLP system. In J.-L. Lassez, editor, Proceedings of the 4th International
Conference on Logic Programming (ICLP’87), pages 196–218, Melbourne,
Australia, May 1987. MIT Press.

[5] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap.
The CLP(R) language and system. ACM Transactions on Programming
Languages and Systems, 14(3):339–395, July 1992.

[6] Spiro Michaylov and Frank Pfenning. Higher-order logic program-
ming as constraint logic programming. In Position Papers for the First
Workshop on Principles and Practice of Constraint Programming, pages 221–
229, Newport, Rhode Island, April 1993. Brown University.

[7] Greg Nelson and Derek C. Oppen. Simplification by cooperating deci-
sion procedures. ACM Transactions on Programming Languages and Sys-
tems, 1(2):245–257, 1979.

[8] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

LECTURE NOTES DECEMBER 7, 2006

	Cover
	01-lp.pdf
	02-data.pdf
	03-induction.pdf
	04-opsem.pdf
	05-backtrack.pdf
	06-unif.pdf
	07-lifting.pdf
	08-completion.pdf
	09-types.pdf
	10-poly.pdf
	11-diff.pdf
	12-linear.pdf
	13-alp.pdf
	14-cutelim.pdf
	15-resources.pdf
	16-subst.pdf
	17-modes.pdf
	18-proofs.pdf
	19-progress.pdf
	20-bottomup.pdf
	21-forward.pdf
	22-hyper.pdf
	23-monadic.pdf
	24-metavars.pdf
	25-ssos.pdf
	26-datalog.pdf
	27-clp.pdf

